» Articles » PMID: 2304458

Stable Transfection of the Human Parasite Leishmania Major Delineates a 30-kilobase Region Sufficient for Extrachromosomal Replication and Expression

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 1990 Mar 1
PMID 2304458
Citations 186
Authors
Affiliations
Soon will be listed here.
Abstract

To delineate segments of the genome of the human protozoan parasite Leishmania major necessary for replication and expression, we developed a vector (pR-NEO) which can be reproducibly introduced into L. major. This DNA was derived from a 30-kilobase extrachromosomal amplified DNA bearing the dihydrofolate reductase-thymidylate synthase gene, with the coding region for neomycin phosphotransferase substituted for that of dihydrofolate reductase-thymidylate synthase and a bacterial origin of replication and selectable marker added. G418-resistant lines were obtained at high efficiency by electroporation of pR-NEO (approaching 10(-4) per cell), while constructs bearing an inverted neo gene or lacking Leishmania sequences did not confer resistance. pR-NEO replicated in L. major and gave rise to correctly processed transcripts bearing the trans-spliced miniexon. Molecular karyotype analysis showed that in some lines pR-NEO DNA exists exclusively as an extrachromosomal circle, a finding supported by the rescue of intact pR-NEO after transformation of Escherichia coli. These data genetically localize all elements required in cis for DNA replication, transcription, and trans splicing to the Leishmania DNA contained within pR-NEO DNA and signal the advent of stable transfection methodology for addressing molecular phenomena in trypanosomatid parasites.

Citing Articles

A short ncRNA modulates gene expression and affects stress response and parasite differentiation in .

Quilles Jr J, Espada C, Orsine L, Defina T, Almeida L, Holetz F Front Cell Infect Microbiol. 2025; 15:1513908.

PMID: 39981380 PMC: 11841412. DOI: 10.3389/fcimb.2025.1513908.


CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles.

Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim A Nat Commun. 2024; 15(1):9409.

PMID: 39482311 PMC: 11528044. DOI: 10.1038/s41467-024-53790-5.


Molecular Characterization of Sterol C4-Methyl Oxidase in .

Ning Y, Basu S, Hsu F, Feng M, Wang M, Zhang K Int J Mol Sci. 2024; 25(20).

PMID: 39456689 PMC: 11507432. DOI: 10.3390/ijms252010908.


N-substituted-4-(pyridin-4-ylalkyl)piperazine-1-carboxamides and related compounds as Leishmania CYP51 and CYP5122A1 inhibitors.

La Rosa C, Sharma P, Junaid Dar M, Jin Y, Qin L, Roy A Bioorg Med Chem. 2024; 113:117907.

PMID: 39288704 PMC: 11552653. DOI: 10.1016/j.bmc.2024.117907.


Amphotericin B resistance in Leishmania amazonensis: In vitro and in vivo characterization of a Brazilian clinical isolate.

Ferreira B, Coser E, de la Roca S, Aoki J, Branco N, Soares G PLoS Negl Trop Dis. 2024; 18(5):e0012175.

PMID: 38768213 PMC: 11142706. DOI: 10.1371/journal.pntd.0012175.


References
1.
Aviv H, Leder P . Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972; 69(6):1408-12. PMC: 426713. DOI: 10.1073/pnas.69.6.1408. View

2.
Clayton C . The molecular biology of the Kinetoplastidae. Genet Eng. 1988; (7):1-56. View

3.
Long E, Dawid I . Repeated genes in eukaryotes. Annu Rev Biochem. 1980; 49:727-64. DOI: 10.1146/annurev.bi.49.070180.003455. View

4.
Beck E, Ludwig G, Auerswald E, Reiss B, Schaller H . Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene. 1982; 19(3):327-36. DOI: 10.1016/0378-1119(82)90023-3. View

5.
Coderre J, Beverley S, Schimke R, Santi D . Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci U S A. 1983; 80(8):2132-6. PMC: 393771. DOI: 10.1073/pnas.80.8.2132. View