» Articles » PMID: 23024744

Listeria Monocytogenes Differential Transcriptome Analysis Reveals Temperature-dependent Agr Regulation and Suggests Overlaps with Other Regulons

Overview
Journal PLoS One
Date 2012 Oct 2
PMID 23024744
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Listeria monocytogenes is a ubiquitous, opportunistic pathogenic organism. Environmental adaptation requires constant regulation of gene expression. Among transcriptional regulators, AgrA is part of an auto-induction system. Temperature is an environmental cue critical for in vivo adaptation. In order to investigate how temperature may affect AgrA-dependent transcription, we compared the transcriptomes of the parental strain L. monocytogenes EGD-e and its ΔagrA mutant at the saprophytic temperature of 25°C and in vivo temperature of 37°C. Variations of transcriptome were higher at 37°C than at 25°C. Results suggested that AgrA may be involved in the regulation of nitrogen transport, amino acids, purine and pyrimidine biosynthetic pathways and phage-related functions. Deregulations resulted in a growth advantage at 37°C, but affected salt tolerance. Finally, our results suggest overlaps with PrfA, σB, σH and CodY regulons. These overlaps may suggest that through AgrA, Listeria monocytogenes integrates information on its biotic environment.

Citing Articles

A short-lived peptide signal regulates cell-to-cell communication in Listeria monocytogenes.

Bejder B, Monda F, Gless B, Bojer M, Ingmer H, Olsen C Commun Biol. 2024; 7(1):942.

PMID: 39097633 PMC: 11297923. DOI: 10.1038/s42003-024-06623-6.


Characterization of an Autoinducing Peptide Signal Reveals Highly Efficacious Synthetic Inhibitors and Activators of Quorum Sensing and Biofilm Formation in .

West K, Ma S, Pensinger D, Tucholski T, Tiambeng T, Eisenbraun E Biochemistry. 2023; 62(19):2878-2892.

PMID: 37699554 PMC: 10676741. DOI: 10.1021/acs.biochem.3c00373.


Lactic acid bacteria secreted proteins as potential Listeria monocytogenes quorum sensing inhibitors.

Marques P, Jaiswal A, de Almeida F, Pinto U, Ferreira-Machado A, Tiwari S Mol Divers. 2023; 28(5):2897-2912.

PMID: 37658910 DOI: 10.1007/s11030-023-10722-7.


Evolution of Listeria monocytogenes Reveals Selective Pressure for Loss of SigB and AgrA Function at Different Incubation Temperatures.

Guerreiro D, Wu J, McDermott E, Garmyn D, Dockery P, Boyd A Appl Environ Microbiol. 2022; 88(11):e0033022.

PMID: 35583325 PMC: 9195950. DOI: 10.1128/aem.00330-22.


Rhizobacteria Impact Colonization of Listeria monocytogenes on Arabidopsis thaliana Roots.

Schoenborn A, Clapper H, Eckshtain-Levi N, Shank E Appl Environ Microbiol. 2021; 87(23):e0141121.

PMID: 34550783 PMC: 8579980. DOI: 10.1128/AEM.01411-21.


References
1.
Xayarath B, Marquis H, Port G, Freitag N . Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Mol Microbiol. 2009; 74(4):956-73. PMC: 2802666. DOI: 10.1111/j.1365-2958.2009.06910.x. View

2.
Formstone A, Carballido-Lopez R, Noirot P, Errington J, Scheffers D . Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J Bacteriol. 2007; 190(5):1812-21. PMC: 2258661. DOI: 10.1128/JB.01394-07. View

3.
Hense B, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft J . Does efficiency sensing unify diffusion and quorum sensing?. Nat Rev Microbiol. 2007; 5(3):230-9. DOI: 10.1038/nrmicro1600. View

4.
Nightingale K, Schukken Y, Nightingale C, Fortes E, Ho A, Her Z . Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol. 2004; 70(8):4458-67. PMC: 492327. DOI: 10.1128/AEM.70.8.4458-4467.2004. View

5.
Chakraborty T, Domann E, Hartl M, Goebel W, Nichterlein T, Notermans S . Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol. 1992; 174(2):568-74. PMC: 205751. DOI: 10.1128/jb.174.2.568-574.1992. View