» Articles » PMID: 23002226

Wall Teichoic Acids Restrict Access of Bacteriophage Endolysin Ply118, Ply511, and PlyP40 Cell Wall Binding Domains to the Listeria Monocytogenes Peptidoglycan

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2012 Sep 25
PMID 23002226
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The C-terminal cell wall binding domains (CBDs) of phage endolysins direct the enzymes to their binding ligands on the bacterial cell wall with high affinity and specificity. The Listeria monocytogenes Ply118, Ply511, and PlyP40 endolysins feature related CBDs which recognize the directly cross-linked peptidoglycan backbone structure of Listeria. However, decoration with fluorescently labeled CBDs primarily occurs at the poles and septal regions of the rod-shaped cells. To elucidate the potential role of secondary cell wall-associated carbohydrates such as the abundant wall teichoic acid (WTA) on this phenomenon, we investigated CBD binding using L. monocytogenes serovar 1/2 and 4 cells deficient in WTA. Mutants were obtained by deletion of two redundant tagO homologues, whose products catalyze synthesis of the WTA linkage unit. While inactivation of either tagO1 (EGDe lmo0959) or tagO2 (EGDe lmo2519) alone did not affect WTA content, removal of both alleles following conditional complementation yielded WTA-deficient Listeria cells. Substitution of tagO from an isopropyl-β-d-thiogalactopyranoside-inducible single-copy integration vector restored the original phenotype. Although WTA-deficient cells are viable, they featured severe growth inhibition and an unusual coccoid morphology. In contrast to CBDs from other Listeria phage endolysins which directly utilize WTA as binding ligand, the data presented here show that WTAs are not required for attachment of CBD118, CBD511, and CBDP40. Instead, lack of the cell wall polymers enables unrestricted spatial access of CBDs to the cell wall surface, indicating that the abundant WTA can negatively regulate sidewall localization of the cell wall binding domains.

Citing Articles

Phage-derived proteins: Advancing food safety through biocontrol and detection of foodborne pathogens.

Choi D, Ryu S, Kong M Compr Rev Food Sci Food Saf. 2025; 24(2):e70124.

PMID: 39898971 PMC: 11891642. DOI: 10.1111/1541-4337.70124.


Structural and functional analysis reveals the catalytic mechanism and substrate binding mode of the broad-spectrum endolysin Ply2741.

Wang S, Li X, Ma J, Duan X, Wang H, Wang L Virulence. 2025; 16(1):2449025.

PMID: 39810299 PMC: 11740692. DOI: 10.1080/21505594.2024.2449025.


Analysis of the cell wall binding domain in bacteriocin-like lysin LysL from Lactococcus lactis LAC460.

Mokhtari S, Li Y, Saris P, Takala T Arch Microbiol. 2024; 206(7):336.

PMID: 38954047 PMC: 11219366. DOI: 10.1007/s00203-024-04066-5.


Effect of Domain Manipulation in the Staphylococcal Phage Endolysin, Endo88, on Lytic Efficiency and Host Range.

Krishnan M, Tham H, Wan Nur Ismah W, Yusoff K, Song A Mol Biotechnol. 2024; .

PMID: 38904894 DOI: 10.1007/s12033-024-01216-4.


Cellular and Enzymatic Determinants Impacting the Exolytic Action of an Anti-Staphylococcal Enzybiotic.

Gouveia A, Pinto D, Vitor J, Sao-Jose C Int J Mol Sci. 2024; 25(1).

PMID: 38203699 PMC: 10778630. DOI: 10.3390/ijms25010523.


References
1.
Navarre W, Schneewind O . Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999; 63(1):174-229. PMC: 98962. DOI: 10.1128/MMBR.63.1.174-229.1999. View

2.
Loessner M, Kramer K, Ebel F, Scherer S . C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol. 2002; 44(2):335-49. DOI: 10.1046/j.1365-2958.2002.02889.x. View

3.
Garcia E, Garcia J, Garcia P, Arraras A, Sanchez-Puelles J, Lopez R . Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc Natl Acad Sci U S A. 1988; 85(3):914-8. PMC: 279667. DOI: 10.1073/pnas.85.3.914. View

4.
Hether N, Jackson L . Lipoteichoic acid from Listeria monocytogenes. J Bacteriol. 1983; 156(2):809-17. PMC: 217899. DOI: 10.1128/jb.156.2.809-817.1983. View

5.
Xia G, Peschel A . Toward the pathway of S. aureus WTA biosynthesis. Chem Biol. 2008; 15(2):95-6. DOI: 10.1016/j.chembiol.2008.02.005. View