Asif M, Kaygusuz E, Shinawi M, Nickelsen A, Hsieh T, Wagle P
HGG Adv. 2022; 3(3):100111.
PMID: 35571680
PMC: 9092267.
DOI: 10.1016/j.xhgg.2022.100111.
Savage S, Zhang B
Clin Proteomics. 2020; 17:27.
PMID: 32676006
PMC: 7353784.
DOI: 10.1186/s12014-020-09290-x.
Cheng L, Poulsen S, Wu Q, Esteva-Font C, Olesen E, Peng L
J Am Soc Nephrol. 2019; 30(8):1454-1470.
PMID: 31253651
PMC: 6683706.
DOI: 10.1681/ASN.2018101025.
Kubiniok P, Finicle B, Piffaretti F, McCracken A, Perryman M, Hanessian S
Mol Cell Proteomics. 2018; 18(3):408-422.
PMID: 30482847
PMC: 6398214.
DOI: 10.1074/mcp.RA118.001053.
Awan M, Saeed F
Proteomics. 2018; 18(20):e1800206.
PMID: 30216669
PMC: 6400488.
DOI: 10.1002/pmic.201800206.
An Out-of-Core GPU based dimensionality reduction algorithm for Big Mass Spectrometry Data and its application in bottom-up Proteomics.
Awan M, Saeed F
ACM BCB. 2017; 2017:550-555.
PMID: 28868521
PMC: 5580946.
DOI: 10.1145/3107411.3107466.
N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton.
Rinschen M, Hoppe A, Grahammer F, Kann M, Volker L, Schurek E
J Am Soc Nephrol. 2017; 28(10):2867-2878.
PMID: 28724775
PMC: 5619959.
DOI: 10.1681/ASN.2016101119.
A machine learning strategy for predicting localization of post-translational modification sites in protein-protein interacting regions.
Saethang T, Payne D, Avihingsanon Y, Pisitkun T
BMC Bioinformatics. 2016; 17(1):307.
PMID: 27534850
PMC: 4989344.
DOI: 10.1186/s12859-016-1165-8.
Phosphorylation of residues inside the SNARE complex suppresses secretory vesicle fusion.
Malmersjo S, Di Palma S, Diao J, Lai Y, Pfuetzner R, Wang A
EMBO J. 2016; 35(16):1810-21.
PMID: 27402227
PMC: 5010044.
DOI: 10.15252/embj.201694071.
Computational Analysis of the Predicted Evolutionary Conservation of Human Phosphorylation Sites.
Trost B, Kusalik A, Napper S
PLoS One. 2016; 11(4):e0152809.
PMID: 27046079
PMC: 4821552.
DOI: 10.1371/journal.pone.0152809.
Deubiquitylation of Protein Cargo Is Not an Essential Step in Exosome Formation.
Huebner A, Cheng L, Somparn P, Knepper M, Fenton R, Pisitkun T
Mol Cell Proteomics. 2016; 15(5):1556-71.
PMID: 26884507
PMC: 4858939.
DOI: 10.1074/mcp.M115.054965.
A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells.
Cheng L, Wu Q, Kortenoeven M, Pisitkun T, Fenton R
Sci Rep. 2015; 5:12829.
PMID: 26239621
PMC: 4523861.
DOI: 10.1038/srep12829.
Comparative phosphoproteomic analysis of mammalian glomeruli reveals conserved podocin C-terminal phosphorylation as a determinant of slit diaphragm complex architecture.
Rinschen M, Pahmeyer C, Pisitkun T, Schnell N, Wu X, Maass M
Proteomics. 2014; 15(7):1326-31.
PMID: 25420462
PMC: 6512310.
DOI: 10.1002/pmic.201400235.
PhosSA: Fast and accurate phosphorylation site assignment algorithm for mass spectrometry data.
Saeed F, Pisitkun T, Hoffert J, Rashidian S, Wang G, Gucek M
Proteome Sci. 2014; 11(Suppl 1):S14.
PMID: 24565028
PMC: 3909108.
DOI: 10.1186/1477-5956-11-S1-S14.
Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier.
Rinschen M, Wu X, Konig T, Pisitkun T, Hagmann H, Pahmeyer C
J Am Soc Nephrol. 2014; 25(7):1509-22.
PMID: 24511133
PMC: 4073431.
DOI: 10.1681/ASN.2013070760.
Global analysis of neuronal phosphoproteome regulation by chondroitin sulfate proteoglycans.
Yu P, Pisitkun T, Wang G, Wang R, Katagiri Y, Gucek M
PLoS One. 2013; 8(3):e59285.
PMID: 23527152
PMC: 3601063.
DOI: 10.1371/journal.pone.0059285.
Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells.
Bolger S, Gonzales Hurtado P, Hoffert J, Saeed F, Pisitkun T, Knepper M
Am J Physiol Cell Physiol. 2012; 303(10):C1006-20.
PMID: 22992673
PMC: 3492837.
DOI: 10.1152/ajpcell.00260.2012.