» Articles » PMID: 22995402

AMP-activated Protein Kinase Stimulates Myostatin Expression in C2C12 Cells

Overview
Publisher Elsevier
Specialty Biochemistry
Date 2012 Sep 22
PMID 22995402
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

AMP-activated protein kinase (AMPK) is a master regulator of energy metabolism in skeletal muscle; AMPK induces muscle protein degradation but the underlying mechanisms are unclear. Myostatin is a powerful negative regulator of skeletal muscle mass and growth in mammalian species. We hypothesized that AMPK stimulates myostatin expression, which provides an explanation for the negative role of AMPK in muscle growth. The objective of this study is to demonstrate that AMPK stimulates myostatin expression using C2C12 cells as a model. Activation of AMPK by 5-aminoimidazole-4-carboxamide-1-β-d-riboruranoside (AICAR) dramatically increased the mRNA expression and protein content of myostatin in C2C12 myotubes, and to a lesser degree in myoblasts. Metformin, another AMPK activator, also stimulated myostatin expression at low concentrations. In addition, ectopic expression of AMPK wild-type α subunit (enhancing AMPK activity) and AMPK K45R mutant (knockdown AMPK activity) enhanced and reduced myostatin expression, respectively. These results indicate that AMPK stimulates myostatin expression in C2C12 cells, providing an explanation for the negative effect of AMPK on muscle growth.

Citing Articles

Sarcopenia in independent oldest-old individuals treated for diabetes, with or without metformin: a case-control study.

Aguiar M, Kim S, Bortoluzzo A, Di Tommaso A, Cendoroglo M, Colleoni G Acta Diabetol. 2025; .

PMID: 39888448 DOI: 10.1007/s00592-025-02448-9.


Daidzein improves muscle atrophy caused by lovastatin by regulating the AMPK/FOXO3a axis.

Wang K, Zeng H, Yang H Chin Med. 2024; 19(1):180.

PMID: 39741316 PMC: 11686997. DOI: 10.1186/s13020-024-01034-5.


Sarcopenic obesity: emerging mechanisms and therapeutic potential.

Axelrod C, Dantas W, Kirwan J Metabolism. 2023; 146:155639.

PMID: 37380015 PMC: 11448314. DOI: 10.1016/j.metabol.2023.155639.


Myostatin: a potential therapeutic target for metabolic syndrome.

Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C Front Endocrinol (Lausanne). 2023; 14:1181913.

PMID: 37288303 PMC: 10242177. DOI: 10.3389/fendo.2023.1181913.


Exposure to High Altitude Promotes Loss of Muscle Mass That Is Not Rescued by Metformin.

Fullerton Z, McNair B, Marcello N, Schmitt E, Bruns D High Alt Med Biol. 2022; 23(3):215-222.

PMID: 35653735 PMC: 9526469. DOI: 10.1089/ham.2022.0015.


References
1.
Elliott B, Renshaw D, Getting S, Mackenzie R . The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf). 2012; 205(3):324-40. DOI: 10.1111/j.1748-1716.2012.02423.x. View

2.
Munoz N, Beard B, Ryu B, Luche R, Trobridge G, Rawlings D . Novel reporter systems for facile evaluation of I-SceI-mediated genome editing. Nucleic Acids Res. 2011; 40(2):e14. PMC: 3258163. DOI: 10.1093/nar/gkr897. View

3.
Corton J, Gillespie J, Hawley S, Hardie D . 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?. Eur J Biochem. 1995; 229(2):558-65. DOI: 10.1111/j.1432-1033.1995.tb20498.x. View

4.
Zhao J, Yue W, Zhu M, Du M . AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem. 2011; 286(18):16426-34. PMC: 3091248. DOI: 10.1074/jbc.M110.199372. View

5.
McPherron A, Lee S . Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997; 94(23):12457-61. PMC: 24998. DOI: 10.1073/pnas.94.23.12457. View