6.
Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A
. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004; 32(3):936-48.
PMC: 373388.
DOI: 10.1093/nar/gkh247.
View
7.
Matveeva O, Kang Y, Spiridonov A, Saetrom P, Nemtsov V, Ogurtsov A
. Optimization of duplex stability and terminal asymmetry for shRNA design. PLoS One. 2010; 5(4):e10180.
PMC: 2857877.
DOI: 10.1371/journal.pone.0010180.
View
8.
Khvorova A, Reynolds A, Jayasena S
. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003; 115(2):209-16.
DOI: 10.1016/s0092-8674(03)00801-8.
View
9.
Jia P, Shi T, Cai Y, Li Y
. Demonstration of two novel methods for predicting functional siRNA efficiency. BMC Bioinformatics. 2006; 7:271.
PMC: 1524998.
DOI: 10.1186/1471-2105-7-271.
View
10.
Jiang P, Wu H, Da Y, Sang F, Wei J, Sun X
. RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching. Comput Methods Programs Biomed. 2007; 87(3):230-8.
DOI: 10.1016/j.cmpb.2007.06.001.
View
11.
Hamilton A, Voinnet O, Chappell L, Baulcombe D
. Two classes of short interfering RNA in RNA silencing. EMBO J. 2002; 21(17):4671-9.
PMC: 125409.
DOI: 10.1093/emboj/cdf464.
View
12.
Holen T
. Efficient prediction of siRNAs with siRNArules 1.0: an open-source JAVA approach to siRNA algorithms. RNA. 2006; 12(9):1620-5.
PMC: 1557693.
DOI: 10.1261/rna.81006.
View
13.
Harborth J, Elbashir S, Vandenburgh K, Manninga H, Scaringe S, Weber K
. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 2003; 13(2):83-105.
DOI: 10.1089/108729003321629638.
View
14.
Vickers T, Koo S, Bennett C, Crooke S, Dean N, Baker B
. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem. 2002; 278(9):7108-18.
DOI: 10.1074/jbc.M210326200.
View
15.
Takasaki S, Kotani S, Konagaya A
. An effective method for selecting siRNA target sequences in mammalian cells. Cell Cycle. 2004; 3(6):790-5.
View
16.
Elbashir S, Lendeckel W, Tuschl T
. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001; 15(2):188-200.
PMC: 312613.
DOI: 10.1101/gad.862301.
View
17.
Gong W, Ren Y, Xu Q, Wang Y, Lin D, Zhou H
. Integrated siRNA design based on surveying of features associated with high RNAi effectiveness. BMC Bioinformatics. 2006; 7:516.
PMC: 1698580.
DOI: 10.1186/1471-2105-7-516.
View
18.
Reynolds A, Leake D, Boese Q, Scaringe S, Marshall W, Khvorova A
. Rational siRNA design for RNA interference. Nat Biotechnol. 2004; 22(3):326-30.
DOI: 10.1038/nbt936.
View
19.
Katoh T, Suzuki T
. Specific residues at every third position of siRNA shape its efficient RNAi activity. Nucleic Acids Res. 2007; 35(4):e27.
PMC: 1851635.
DOI: 10.1093/nar/gkl1120.
View
20.
Matveeva O, Nechipurenko Y, Rossi L, Moore B, Saetrom P, Ogurtsov A
. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 2007; 35(8):e63.
PMC: 1885645.
DOI: 10.1093/nar/gkm088.
View