» Articles » PMID: 2298700

Genetic Map of the Bacillus Stearothermophilus NUB36 Chromosome

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1990 Feb 1
PMID 2298700
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus stearothermophilus and Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyrA-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes in Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.

Citing Articles

Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species.

Wu L, Wu H, Chen L, Xie S, Zang H, Borriss R Appl Environ Microbiol. 2014; 80(24):7512-20.

PMID: 25261512 PMC: 4249228. DOI: 10.1128/AEM.02605-14.


Some (bacilli) like it hot: genomics of Geobacillus species.

Studholme D Microb Biotechnol. 2014; 8(1):40-8.

PMID: 25195706 PMC: 4321371. DOI: 10.1111/1751-7915.12161.


Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering.

Blanchard K, Robic S, Matsumura I Appl Microbiol Biotechnol. 2014; 98(15):6715-23.

PMID: 24788326 PMC: 4251812. DOI: 10.1007/s00253-014-5746-z.


Gene replacement of adenylate kinase in the gram-positive thermophile Geobacillus stearothermophilus disrupts adenine nucleotide homeostasis and reduces cell viability.

Counago R, Shamoo Y Extremophiles. 2005; 9(2):135-44.

PMID: 15647886 DOI: 10.1007/s00792-004-0428-x.


Temperature-induced protein synthesis in Bacillus stearothermophilus NUB36.

Wu L, WELKER N J Bacteriol. 1991; 173(15):4889-92.

PMID: 1856181 PMC: 208168. DOI: 10.1128/jb.173.15.4889-4892.1991.


References
1.
Carlton B . Transformation mapping of the genes controlling tryptophan biosynthesis in Bacillus subtilis. J Bacteriol. 1967; 94(3):660-5. PMC: 251936. DOI: 10.1128/jb.94.3.660-665.1967. View

2.
Hoch J, Nester E . Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis. J Bacteriol. 1973; 116(1):59-66. PMC: 246391. DOI: 10.1128/jb.116.1.59-66.1973. View

3.
KANE J, Goode R, Wainscott J . Multiple mutations in cysA 14 MUTANTS OF Bacillus subtilis. J Bacteriol. 1975; 121(1):204-11. PMC: 285632. DOI: 10.1128/jb.121.1.204-211.1975. View

4.
Piggot P . Short communications. Characterization of a cym mutant of Bacillus subtilis. J Gen Microbiol. 1975; 89(2):371-4. DOI: 10.1099/00221287-89-2-371. View

5.
CALLAHAN J, Crawford I, Hess G, Vary P . Cotransductional mapping of the trp-his region of Bacillus megaterium. J Bacteriol. 1983; 154(3):1455-8. PMC: 217624. DOI: 10.1128/jb.154.3.1455-1458.1983. View