» Articles » PMID: 22984916

Simplified Equation to Extract Diffusion Coefficients from Confocal FRAP Data

Overview
Journal Traffic
Publisher Wiley
Specialties Biology
Physiology
Date 2012 Sep 19
PMID 22984916
Citations 112
Authors
Affiliations
Soon will be listed here.
Abstract

Quantitative measurements of diffusion can provide important information about how proteins and lipids interact with their environment within the cell and the effective size of the diffusing species. Confocal fluorescence recovery after photobleaching (FRAP) is one of the most widely accessible approaches to measure protein and lipid diffusion in living cells. However, straightforward approaches to quantify confocal FRAP measurements in terms of absolute diffusion coefficients are currently lacking. Here, we report a simplified equation that can be used to extract diffusion coefficients from confocal FRAP data using the half time of recovery and effective bleach radius for a circular bleach region, and validate this equation for a series of fluorescently labeled soluble and membrane-bound proteins and lipids. We show that using this approach, diffusion coefficients ranging over three orders of magnitude can be obtained from confocal FRAP measurements performed under standard imaging conditions, highlighting its broad applicability.

Citing Articles

CD44 and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of cytoskeletal signaling modules driving bleb-based migration.

Jha A, Chandra A, Farahani P, Toettcher J, Haugh J, Waterman C bioRxiv. 2025; .

PMID: 39803565 PMC: 11722407. DOI: 10.1101/2024.12.31.630838.


p14 forms meso-scale assemblies upon phase separation with NPM1.

Gibbs E, Miao Q, Ferrolino M, Bajpai R, Hassan A, Phillips A Nat Commun. 2024; 15(1):9531.

PMID: 39528457 PMC: 11555371. DOI: 10.1038/s41467-024-53904-z.


Molecularly Engineered Supramolecular Thermoresponsive Hydrogels with Tunable Mechanical and Dynamic Properties.

Rijns L, Duijs H, Lafleur R, Cardinaels R, Palmans A, Dankers P Biomacromolecules. 2024; 25(8):4686-4696.

PMID: 39059106 PMC: 11323010. DOI: 10.1021/acs.biomac.3c01357.


Parkinson's-linked LRRK2-G2019S derails AMPAR trafficking, mobility, and composition in striatum with cell-type and subunit specificity.

Gupta S, Tielemans A, Guevara C, Huntley G, Benson D Proc Natl Acad Sci U S A. 2024; 121(28):e2317833121.

PMID: 38968112 PMC: 11252801. DOI: 10.1073/pnas.2317833121.


Selective activation of photoactivatable fluorescent protein based on binary holography.

Wang Y, Bi Z, Song Y, Duan L, Chen S Biomed Opt Express. 2024; 15(5):3382-3393.

PMID: 38855656 PMC: 11161383. DOI: 10.1364/BOE.519531.


References
1.
Soumpasis D . Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J. 1983; 41(1):95-7. PMC: 1329018. DOI: 10.1016/S0006-3495(83)84410-5. View

2.
Salmon E, Leslie R, Saxton W, Karow M, McIntosh J . Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol. 1984; 99(6):2165-74. PMC: 2113564. DOI: 10.1083/jcb.99.6.2165. View

3.
Drake K, Kang M, Kenworthy A . Nucleocytoplasmic distribution and dynamics of the autophagosome marker EGFP-LC3. PLoS One. 2010; 5(3):e9806. PMC: 2843706. DOI: 10.1371/journal.pone.0009806. View

4.
Waharte F, Steenkeste K, Briandet R, Fontaine-Aupart M . Diffusion measurements inside biofilms by image-based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope. Appl Environ Microbiol. 2010; 76(17):5860-9. PMC: 2935062. DOI: 10.1128/AEM.00754-10. View

5.
Conrad C, Wunsche A, Tan T, Bulkescher J, Sieckmann F, Verissimo F . Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nat Methods. 2011; 8(3):246-9. PMC: 3086017. DOI: 10.1038/nmeth.1558. View