» Articles » PMID: 22967508

Collaborative Interplay Between FGF-2 and VEGF-C Promotes Lymphangiogenesis and Metastasis

Overview
Specialty Science
Date 2012 Sep 13
PMID 22967508
Citations 108
Authors
Affiliations
Soon will be listed here.
Abstract

Interplay between various lymphangiogenic factors in promoting lymphangiogenesis and lymphatic metastasis remains poorly understood. Here we show that FGF-2 and VEGF-C, two lymphangiogenic factors, collaboratively promote angiogenesis and lymphangiogenesis in the tumor microenvironment, leading to widespread pulmonary and lymph-node metastases. Coimplantation of dual factors in the mouse cornea resulted in additive angiogenesis and lymphangiogenesis. At the molecular level, we showed that FGFR-1 expressed in lymphatic endothelial cells is a crucial receptor that mediates the FGF-2-induced lymphangiogenesis. Intriguingly, the VEGFR-3-mediated signaling was required for the lymphatic tip cell formation in both FGF-2- and VEGF-C-induced lymphangiogenesis. Consequently, a VEGFR-3-specific neutralizing antibody markedly inhibited FGF-2-induced lymphangiogenesis. Thus, the VEGFR-3-induced lymphatic endothelial cell tip cell formation is a prerequisite for FGF-2-stimulated lymphangiogenesis. In the tumor microenvironment, the reciprocal interplay between FGF-2 and VEGF-C collaboratively stimulated tumor growth, angiogenesis, intratumoral lymphangiogenesis, and metastasis. Thus, intervention and targeting of the FGF-2- and VEGF-C-induced angiogenic and lymphangiogenic synergism could be potentially important approaches for cancer therapy and prevention of metastasis.

Citing Articles

Regulation of VEGFR3 signaling in lymphatic endothelial cells.

Kuonqui K, Campbell A, Pollack B, Shin J, Sarker A, Brown S Front Cell Dev Biol. 2025; 13:1527971.

PMID: 40046235 PMC: 11880633. DOI: 10.3389/fcell.2025.1527971.


Lymphatic transport in anti-tumor immunity and metastasis.

Sun M, Angelillo J, Hugues S J Exp Med. 2025; 222(3).

PMID: 39969537 PMC: 11837853. DOI: 10.1084/jem.20231954.


Negative regulation of lymphangiogenesis by Tenascin-C delays the resolution of inflammation.

Katoh D, Senga Y, Mizutani K, Maruyama K, Yamakawa D, Yamamuro T iScience. 2025; 28(2):111756.

PMID: 39925433 PMC: 11803235. DOI: 10.1016/j.isci.2025.111756.


Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review).

Zhang Z, Zhao R, Wu X, Ma Y, He Y Mol Med Rep. 2024; 31(2).

PMID: 39635819 PMC: 11638739. DOI: 10.3892/mmr.2024.13412.


LNMAC Promotes Cervical Squamous Cell Carcinoma Lymphatic Metastasis via Epigenetic Regulation of FGF2-Induced Lymphangiogenesis.

Zhang C, Yuan L, Wen W, Shao C, Liao Y, Jia Y Adv Sci (Weinh). 2024; 11(38):e2404645.

PMID: 39119899 PMC: 11481257. DOI: 10.1002/advs.202404645.


References
1.
Nico B, De Falco G, Vacca A, Roncali L, Ribatti D . In vivo absence of synergism between fibroblast growth factor-2 and vascular endothelial growth factor. J Hematother Stem Cell Res. 2002; 10(6):905-12. DOI: 10.1089/152581601317211006. View

2.
Cao Y . Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer. 2005; 5(9):735-43. DOI: 10.1038/nrc1693. View

3.
Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D . VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol. 2011; 13(10):1202-13. PMC: 3261765. DOI: 10.1038/ncb2331. View

4.
Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H . Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001; 153(3):543-53. PMC: 2190573. DOI: 10.1083/jcb.153.3.543. View

5.
Kaplan R, Riba R, Zacharoulis S, Bramley A, Vincent L, Costa C . VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005; 438(7069):820-7. PMC: 2945882. DOI: 10.1038/nature04186. View