» Articles » PMID: 22941403

Probing the Conductance Superposition Law in Single-molecule Circuits with Parallel Paths

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2012 Sep 4
PMID 22941403
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference effects dramatically reduce the electron transfer rate through a meta-connected benzene ring when compared with a para-connected benzene ring. For longer conjugated and cross-conjugated molecules, destructive interference effects have been observed in the tunnelling conductance through molecular junctions. Here, we investigate the conductance superposition law for parallel components in single-molecule circuits, particularly the role of interference. We synthesize a series of molecular systems that contain either one backbone or two backbones in parallel, bonded together cofacially by a common linker on each end. Single-molecule conductance measurements and transport calculations based on density functional theory show that the conductance of a double-backbone molecular junction can be more than twice that of a single-backbone junction, providing clear evidence for constructive interference.

Citing Articles

Hydroxyl Group as the 'Bridge' to Enhance the Single-Molecule Conductance by Hyperconjugation.

Lv X, Li C, Guo M, Hong W, Chen L, Zhang Q Molecules. 2024; 29(11).

PMID: 38893316 PMC: 11173964. DOI: 10.3390/molecules29112440.


Understanding Emergent Complexity from a Single-Molecule Perspective.

Guo Y, Li M, Zhao C, Zhang Y, Jia C, Guo X JACS Au. 2024; 4(4):1278-1294.

PMID: 38665639 PMC: 11040556. DOI: 10.1021/jacsau.3c00845.


Signatures of Topological States in Conjugated Macrocycles.

Almughathawi R, Hou S, Wu Q, Lambert C Nano Lett. 2024; .

PMID: 38591962 PMC: 11057032. DOI: 10.1021/acs.nanolett.3c04796.


Theoretical Study on the Open-Shell Electronic Structure and Electron Conductivity of [18]Annulene as a Molecular Parallel Circuit Model.

Amamizu N, Nishida M, Sasaki K, Kishi R, Kitagawa Y Nanomaterials (Basel). 2024; 14(1).

PMID: 38202553 PMC: 10781064. DOI: 10.3390/nano14010098.


Electronic Conductance and Thermopower of Cross-Conjugated and Skipped-Conjugated Molecules in Single-Molecule Junctions.

Salthouse R, Hurtado-Gallego J, Grace I, Davidson R, Alshammari O, Agrait N J Phys Chem C Nanomater Interfaces. 2023; 127(28):13751-13758.

PMID: 37528901 PMC: 10389811. DOI: 10.1021/acs.jpcc.3c00742.


References
1.
Guedon C, Valkenier H, Markussen T, Thygesen K, Hummelen J, van der Molen S . Observation of quantum interference in molecular charge transport. Nat Nanotechnol. 2012; 7(5):305-9. DOI: 10.1038/nnano.2012.37. View

2.
Martin C, Ding D, Sorensen J, Bjornholm T, van Ruitenbeek J, van der Zant H . Fullerene-based anchoring groups for molecular electronics. J Am Chem Soc. 2008; 130(40):13198-9. DOI: 10.1021/ja804699a. View

3.
Liu R, Ke S, Baranger H, Yang W . Intermolecular effect in molecular electronics. J Chem Phys. 2005; 122(4):44703. DOI: 10.1063/1.1825377. View

4.
Aradhya S, Meisner J, Krikorian M, Ahn S, Parameswaran R, Steigerwald M . Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 2012; 12(3):1643-7. DOI: 10.1021/nl2045815. View

5.
Quek S, Kamenetska M, Steigerwald M, Choi H, Louie S, Hybertsen M . Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nanotechnol. 2009; 4(4):230-4. DOI: 10.1038/nnano.2009.10. View