Wang X, Li C, Hu J, Cao F, Zhu L, Zhu Y
Front Pharmacol. 2025; 16:1534479.
PMID: 39944629
PMC: 11813766.
DOI: 10.3389/fphar.2025.1534479.
Matondo-Mvula N, Elleithy K
Entropy (Basel). 2024; 26(8).
PMID: 39202100
PMC: 11353681.
DOI: 10.3390/e26080630.
Resch D, Gullo R, Teuwen J, Semturs F, Hummel J, Resch A
Radiol Imaging Cancer. 2024; 6(4):e230149.
PMID: 38995172
PMC: 11287230.
DOI: 10.1148/rycan.230149.
Rumman M, Ono N, Ohuchida K, Altaf-Ul-Amin M, Huang M, Kanaya S
PLOS Digit Health. 2023; 2(12):e0000391.
PMID: 38064416
PMC: 10707605.
DOI: 10.1371/journal.pdig.0000391.
Malik M, Yasmin S, Kumar A, Hassan Y, Rizvi Y, Iffat
Cureus. 2023; 15(9):e46208.
PMID: 37908910
PMC: 10614479.
DOI: 10.7759/cureus.46208.
Efficacy of Artificial Intelligence in the Categorisation of Paediatric Pneumonia on Chest Radiographs: A Systematic Review.
Field E, Tam W, Moore N, McEntee M
Children (Basel). 2023; 10(3).
PMID: 36980134
PMC: 10047666.
DOI: 10.3390/children10030576.
Ensemble Learning-Based Hybrid Segmentation of Mammographic Images for Breast Cancer Risk Prediction Using Fuzzy C-Means and CNN Model.
Jha S, Ahmad S, Arya A, Alouffi B, Alharbi A, Alharbi M
J Healthc Eng. 2023; 2023:1491955.
PMID: 36760835
PMC: 9904922.
DOI: 10.1155/2023/1491955.
MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors.
Ogundokun R, Misra S, Akinrotimi A, Ogul H
Sensors (Basel). 2023; 23(2).
PMID: 36679455
PMC: 9863875.
DOI: 10.3390/s23020656.
A review of the current state of the computer-aided diagnosis (CAD) systems for breast cancer diagnosis.
Guo Z, Xie J, Wan Y, Zhang M, Qiao L, Yu J
Open Life Sci. 2022; 17(1):1600-1611.
PMID: 36561500
PMC: 9743193.
DOI: 10.1515/biol-2022-0517.
Breast Cancer Detection Using Automated Segmentation and Genetic Algorithms.
de la Luz Escobar M, De la Rosa J, Galvan-Tejada C, Galvan-Tejada J, Gamboa-Rosales H, de la Rosa Gomez D
Diagnostics (Basel). 2022; 12(12).
PMID: 36553106
PMC: 9777329.
DOI: 10.3390/diagnostics12123099.
Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network.
Hameed Z, Garcia-Zapirain B, Aguirre J, Isaza-Ruget M
Sci Rep. 2022; 12(1):15600.
PMID: 36114214
PMC: 9649689.
DOI: 10.1038/s41598-022-19278-2.
Enhancing Performance of Breast Ultrasound in Opportunistic Screening Women by a Deep Learning-Based System: A Multicenter Prospective Study.
Zhao C, Xiao M, Ma L, Ye X, Deng J, Cui L
Front Oncol. 2022; 12:804632.
PMID: 35223484
PMC: 8867611.
DOI: 10.3389/fonc.2022.804632.
An Efficient Deep Learning Approach to Automatic Glaucoma Detection Using Optic Disc and Optic Cup Localization.
Nawaz M, Nazir T, Javed A, Tariq U, Yong H, Khan M
Sensors (Basel). 2022; 22(2).
PMID: 35062405
PMC: 8780798.
DOI: 10.3390/s22020434.
Mammography Image-Based Diagnosis of Breast Cancer Using Machine Learning: A Pilot Study.
Alshammari M, Almuhanna A, Alhiyafi J
Sensors (Basel). 2022; 22(1).
PMID: 35009746
PMC: 8749541.
DOI: 10.3390/s22010203.
Impact of COVID-19 pandemic on radiology education, training, and practice: A narrative review.
Majumder M, Gaur U, Singh K, Kandamaran L, Gupta S, Haque M
World J Radiol. 2021; 13(11):354-370.
PMID: 34904050
PMC: 8637607.
DOI: 10.4329/wjr.v13.i11.354.
Improved Inception V3 method and its effect on radiologists' performance of tumor classification with automated breast ultrasound system.
Zhang P, Ma Z, Zhang Y, Chen X, Wang G
Gland Surg. 2021; 10(7):2232-2245.
PMID: 34422594
PMC: 8340346.
DOI: 10.21037/gs-21-328.
WHAT CAN WE ACTUALLY SEE USING COMPUTER AIDED DETECTION IN MAMMOGRAPHY?.
Dzoic Dominkovic M, Ivanac G, Radovic N, cavka M
Acta Clin Croat. 2021; 59(4):576-581.
PMID: 34285427
PMC: 8253062.
DOI: 10.20471/acc.2020.59.04.02.
Multi-Features-Based Automated Breast Tumor Diagnosis Using Ultrasound Image and Support Vector Machine.
Zhuang Z, Yang Z, Zhuang S, Joseph Raj A, Yuan Y, Nersisson R
Comput Intell Neurosci. 2021; 2021:9980326.
PMID: 34113378
PMC: 8154287.
DOI: 10.1155/2021/9980326.
Artificial intelligence in breast cancer screening: primary care provider preferences.
Hendrix N, Hauber B, Lee C, Bansal A, Veenstra D
J Am Med Inform Assoc. 2020; 28(6):1117-1124.
PMID: 33367670
PMC: 8200265.
DOI: 10.1093/jamia/ocaa292.
Computer-Aided System Application Value for Assessing Hip Development.
Jiang Y, Yang G, Liang Y, Shi Q, Cui B, Chang X
Front Physiol. 2020; 11:587161.
PMID: 33335486
PMC: 7736091.
DOI: 10.3389/fphys.2020.587161.