Silva M, Martinez C, Cavalcanti de Albuquerque J, Gouvea A, Freire M, Lauthartte L
Toxics. 2024; 12(10).
PMID: 39453132
PMC: 11511492.
DOI: 10.3390/toxics12100712.
Barbosa N, Aschner M, Tinkov A, Farina M, da Rocha J
Toxicol Mech Methods. 2023; 34(1):1-12.
PMID: 37731353
PMC: 10841883.
DOI: 10.1080/15376516.2023.2258958.
Li B, Jin X, Chan H
Arch Toxicol. 2023; 97(10):2625-2641.
PMID: 37612375
PMC: 10475006.
DOI: 10.1007/s00204-023-03580-7.
Zuo K, Xu Q, Wang Y, Sui Y, Niu Y, Liu Z
Toxics. 2023; 11(2).
PMID: 36851019
PMC: 9967424.
DOI: 10.3390/toxics11020144.
Zhang Y, Chen S, Fan F, Xu N, Meng X, Zhang Y
J Pharm Anal. 2023; 13(1):88-98.
PMID: 36820076
PMC: 9937797.
DOI: 10.1016/j.jpha.2022.11.007.
Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders.
Almikhlafi M, Karami M, Jana A, Alqurashi T, Majrashi M, Alghamdi B
Curr Neuropharmacol. 2022; 21(5):1165-1183.
PMID: 36043795
PMC: 10286591.
DOI: 10.2174/1570159X20666220830112408.
The Role of Human LRRK2 in Acute Methylmercury Toxicity in Caenorhabditis elegans.
Ke T, Rocha J, Tinkov A, Santamaria A, Bowman A, Aschner M
Neurochem Res. 2021; 46(11):2991-3002.
PMID: 34272628
DOI: 10.1007/s11064-021-03394-y.
Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle.
Hernandez-Fernandez J, Pinzon-Velasco A, Lopez E, Rodriguez-Becerra P, Marino-Ramirez L
Toxics. 2021; 9(4).
PMID: 33805397
PMC: 8066450.
DOI: 10.3390/toxics9040070.
Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation.
Novo J, Martins B, Raposo R, Pereira F, Oria R, Malva J
Int J Mol Sci. 2021; 22(6).
PMID: 33803585
PMC: 8003103.
DOI: 10.3390/ijms22063101.
The catecholaminergic neurotransmitter system in methylmercury-induced neurotoxicity.
Farina M, Aschner M, da Rocha J
Adv Neurotoxicol. 2020; 1:47-81.
PMID: 32346666
PMC: 7188191.
DOI: 10.1016/bs.ant.2017.07.002.
Calcium-Involved Action of Phytochemicals: Carotenoids and Monoterpenes in the Brain.
Rzajew J, Radzik T, Rebas E
Int J Mol Sci. 2020; 21(4).
PMID: 32093213
PMC: 7073062.
DOI: 10.3390/ijms21041428.
Chronic exposure to methylmercury induces puncta formation in cephalic dopaminergic neurons in Caenorhabditis elegans.
Ke T, Tsatsakis A, Santamaria A, Soare F, Tinkov A, Docea A
Neurotoxicology. 2020; 77:105-113.
PMID: 31935438
PMC: 7061079.
DOI: 10.1016/j.neuro.2020.01.003.
MeHg-induced autophagy via JNK/Vps34 complex pathway promotes autophagosome accumulation and neuronal cell death.
Lin T, Ruan S, Huang D, Meng X, Li W, Wang B
Cell Death Dis. 2019; 10(6):399.
PMID: 31113939
PMC: 6529499.
DOI: 10.1038/s41419-019-1632-z.
Methylmercury alters proliferation, migration, and antioxidant capacity in human HTR8/SV-neo trophoblast cells.
Tucker E, Nowak R
Reprod Toxicol. 2018; 78:60-68.
PMID: 29581082
PMC: 5984162.
DOI: 10.1016/j.reprotox.2018.03.008.
Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation.
Prince L, Rand M
Toxicology. 2017; 393:113-122.
PMID: 29104120
PMC: 5757876.
DOI: 10.1016/j.tox.2017.11.002.
The Putative Role of Environmental Mercury in the Pathogenesis and Pathophysiology of Autism Spectrum Disorders and Subtypes.
Morris G, Puri B, Frye R, Maes M
Mol Neurobiol. 2017; 55(6):4834-4856.
PMID: 28733900
DOI: 10.1007/s12035-017-0692-2.
Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca Dyshomeostasis Antagonism, and Indirect Antioxidation Effects.
Liu W, Xu Z, Yang T, Xu B, Deng Y, Feng S
Mol Neurobiol. 2016; 54(7):5034-5050.
PMID: 27538940
DOI: 10.1007/s12035-016-0020-2.
Low-Dose Methylmercury-Induced Apoptosis and Mitochondrial DNA Mutation in Human Embryonic Neural Progenitor Cells.
Wang X, Yan M, Zhao L, Wu Q, Wu C, Chang X
Oxid Med Cell Longev. 2016; 2016:5137042.
PMID: 27525052
PMC: 4972916.
DOI: 10.1155/2016/5137042.
Mitochondrial Dynamics and Heart Failure.
Knowlton A, Liu T
Compr Physiol. 2016; 6(1):507-26.
PMID: 26756641
PMC: 5695672.
DOI: 10.1002/cphy.c150022.
Multiple Sources of Ca2+ Contribute to Methylmercury-Induced Increased Frequency of Spontaneous Inhibitory Synaptic Responses in Cerebellar Slices of Rat.
Yuan Y, Atchison W
Toxicol Sci. 2016; 150(1):117-30.
PMID: 26732885
PMC: 5009615.
DOI: 10.1093/toxsci/kfv314.