Gaubert M, DellOrco A, Lange C, Garnier-Crussard A, Zimmermann I, Dyrba M
Front Psychiatry. 2023; 13:1010273.
PMID: 36713907
PMC: 9877422.
DOI: 10.3389/fpsyt.2022.1010273.
Mendelsohn Z, Pemberton H, Gray J, Goodkin O, Carrasco F, Scheel M
Neuroradiology. 2022; 65(1):5-24.
PMID: 36331588
PMC: 9816195.
DOI: 10.1007/s00234-022-03074-w.
Hotz I, Deschwanden P, Liem F, Merillat S, Malagurski B, Kollias S
Hum Brain Mapp. 2021; 43(5):1481-1500.
PMID: 34873789
PMC: 8886667.
DOI: 10.1002/hbm.25739.
Sundaresan V, Zamboni G, Rothwell P, Jenkinson M, Griffanti L
Med Image Anal. 2021; 73:102184.
PMID: 34325148
PMC: 8505759.
DOI: 10.1016/j.media.2021.102184.
Chen H, Chen H, Chen C, Chang Y, Wu Y, Chen W
Biomed Res Int. 2021; 2021:9820145.
PMID: 33748284
PMC: 7959972.
DOI: 10.1155/2021/9820145.
Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review.
Gryska E, Schneiderman J, Bjorkman-Burtscher I, Heckemann R
BMJ Open. 2021; 11(1):e042660.
PMID: 33514580
PMC: 7849889.
DOI: 10.1136/bmjopen-2020-042660.
LesionQuant for Assessment of MRI in Multiple Sclerosis-A Promising Supplement to the Visual Scan Inspection.
Brune S, Hogestol E, Cengija V, Berg-Hansen P, Sowa P, Nygaard G
Front Neurol. 2020; 11:546744.
PMID: 33362682
PMC: 7759639.
DOI: 10.3389/fneur.2020.546744.
Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset.
Heinen R, Steenwijk M, Barkhof F, Biesbroek J, van der Flier W, Kuijf H
Sci Rep. 2019; 9(1):16742.
PMID: 31727919
PMC: 6856351.
DOI: 10.1038/s41598-019-52966-0.
Cross-Sectional and Longitudinal MRI Brain Scans Reveal Accelerated Brain Aging in Multiple Sclerosis.
Hogestol E, Kaufmann T, Nygaard G, Beyer M, Sowa P, Nordvik J
Front Neurol. 2019; 10:450.
PMID: 31114541
PMC: 6503038.
DOI: 10.3389/fneur.2019.00450.
Symptoms of fatigue and depression is reflected in altered default mode network connectivity in multiple sclerosis.
Hogestol E, Nygaard G, Alnaes D, Beyer M, Westlye L, Harbo H
PLoS One. 2019; 14(4):e0210375.
PMID: 30933977
PMC: 6443168.
DOI: 10.1371/journal.pone.0210375.
Midlife Work-Related Stress is Associated with Late-Life Gray Matter Volume Atrophy.
Sindi S, Kareholt I, Spulber G, Soininen H, Kivipelto M, Solomon A
J Alzheimers Dis Rep. 2018; 1(1):219-227.
PMID: 30480239
PMC: 6159714.
DOI: 10.3233/ADR-170035.
Brief Computer-Based Information Processing Measures are Linked to White Matter Integrity in Pediatric-Onset Multiple Sclerosis.
Bartlett E, Shaw M, Schwarz C, Feinberg C, DeLorenzo C, Krupp L
J Neuroimaging. 2018; 29(1):140-150.
PMID: 30285300
PMC: 11756925.
DOI: 10.1111/jon.12566.
Small Vessel Disease on Neuroimaging in a 75-Year-Old Cohort (PIVUS): Comparison With Cognitive and Executive Tests.
Nylander R, Kilander L, Ahlstrom H, Lind L, Larsson E
Front Aging Neurosci. 2018; 10:217.
PMID: 30061827
PMC: 6054972.
DOI: 10.3389/fnagi.2018.00217.
Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities.
Ling Y, Jouvent E, Cousyn L, Chabriat H, De Guio F
Neuroinformatics. 2018; 16(2):269-281.
PMID: 29594711
DOI: 10.1007/s12021-018-9372-2.
White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks.
Guerrero R, Qin C, Oktay O, Bowles C, Chen L, Joules R
Neuroimage Clin. 2018; 17:918-934.
PMID: 29527496
PMC: 5842732.
DOI: 10.1016/j.nicl.2017.12.022.
Cognitive Variability during Middle-Age: Possible Association with Neurodegeneration and Cognitive Reserve.
Ferreira D, Machado A, Molina Y, Nieto A, Correia R, Westman E
Front Aging Neurosci. 2017; 9:188.
PMID: 28649200
PMC: 5465264.
DOI: 10.3389/fnagi.2017.00188.
Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
Rincon M, Diaz-Lopez E, Selnes P, Vegge K, Altmann M, Fladby T
Neuroinformatics. 2017; 15(3):231-245.
PMID: 28378263
DOI: 10.1007/s12021-017-9328-y.
Reproducible segmentation of white matter hyperintensities using a new statistical definition.
Damangir S, Westman E, Simmons A, Vrenken H, Wahlund L, Spulber G
MAGMA. 2016; 30(3):227-237.
PMID: 27943055
PMC: 5440501.
DOI: 10.1007/s10334-016-0599-3.
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities.
Griffanti L, Zamboni G, Khan A, Li L, Bonifacio G, Sundaresan V
Neuroimage. 2016; 141:191-205.
PMID: 27402600
PMC: 5035138.
DOI: 10.1016/j.neuroimage.2016.07.018.
Coronary heart disease and cortical thickness, gray matter and white matter lesion volumes on MRI.
Vuorinen M, Damangir S, Niskanen E, Miralbell J, Rusanen M, Spulber G
PLoS One. 2014; 9(10):e109250.
PMID: 25302686
PMC: 4193798.
DOI: 10.1371/journal.pone.0109250.