» Articles » PMID: 22915137

Modeling Melanoblast Development

Overview
Publisher Springer
Specialty Biology
Date 2012 Aug 24
PMID 22915137
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Melanoblasts are a particular type of cell that displays extensive cellular proliferation during development to contribute to the skin. There are only a few melanoblast founders, initially located just dorsal to the neural tube, and they sequentially colonize the dermis, epidermis, and hair follicles. In each compartment, melanoblasts are exposed to a wide variety of developmental cues that regulate their expansion. The colonization of the dermis and epidermis by melanoblasts involves substantial proliferation to generate thousands of cells or more from a few founders within a week of development. This review addresses the cellular and molecular events occurring during melanoblast development. We focus on intrinsic and extrinsic factors that control melanoblast proliferation. We also present a robust mathematical model for estimating the doubling-time of dermal and epidermal melanoblasts for all coat color phenotypes from black to white.

Citing Articles

ADAR1 mediated regulation of neural crest derived melanocytes and Schwann cell development.

Gacem N, Kavo A, Zerad L, Richard L, Mathis S, Kapur R Nat Commun. 2020; 11(1):198.

PMID: 31924792 PMC: 6954203. DOI: 10.1038/s41467-019-14090-5.


Modeling and analysis of melanoblast motion.

Laurent-Gengoux P, Petit V, Larue L J Math Biol. 2019; 79(6-7):2111-2132.

PMID: 31515603 DOI: 10.1007/s00285-019-01422-8.


From neural crest cells to melanocytes: cellular plasticity during development and beyond.

Vandamme N, Berx G Cell Mol Life Sci. 2019; 76(10):1919-1934.

PMID: 30830237 PMC: 11105195. DOI: 10.1007/s00018-019-03049-w.


Neuroendocrine Cells of the Prostate Derive from the Neural Crest.

Szczyrba J, Niesen A, Wagner M, Wandernoth P, Aumuller G, Wennemuth G J Biol Chem. 2016; 292(5):2021-2031.

PMID: 28003366 PMC: 5290971. DOI: 10.1074/jbc.M116.755082.


Microphthalmia-associated transcription factor/T-box factor-2 axis acts through Cyclin D1 to regulate melanocyte proliferation.

Pan L, Ma X, Wen B, Su Z, Zheng X, Liu Y Cell Prolif. 2015; 48(6):631-42.

PMID: 26486273 PMC: 6496872. DOI: 10.1111/cpr.12227.


References
1.
Larue L, Kumasaka M, Goding C . Beta-catenin in the melanocyte lineage. Pigment Cell Res. 2003; 16(3):312-7. DOI: 10.1034/j.1600-0749.2003.00050.x. View

2.
Steingrimsson E, Copeland N, Jenkins N . Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004; 38:365-411. DOI: 10.1146/annurev.genet.38.072902.092717. View

3.
Balani K, Brito F, Kos L, Agarwal A . Melanocyte pigmentation stiffens murine cardiac tricuspid valve leaflet. J R Soc Interface. 2009; 6(40):1097-102. PMC: 2827447. DOI: 10.1098/rsif.2009.0174. View

4.
Walker G, Soyer H, Handoko H, Ferguson B, Kunisada T, Khosrotehrani K . Superficial spreading-like melanoma in Arf(-/-)::Tyr-Nras(Q61K)::K14-Kitl mice: keratinocyte Kit ligand expression sufficient to "translocate" melanomas from dermis to epidermis. J Invest Dermatol. 2011; 131(6):1384-7. PMC: 3138531. DOI: 10.1038/jid.2011.21. View

5.
Nataf V, Amemiya A, Yanagisawa M, Le Douarin N . The expression pattern of endothelin 3 in the avian embryo. Mech Dev. 1998; 73(2):217-20. DOI: 10.1016/s0925-4773(98)00048-3. View