» Articles » PMID: 22876350

Strain Estimation in Phase-sensitive Optical Coherence Elastography

Overview
Specialty Radiology
Date 2012 Aug 10
PMID 22876350
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

We present a theoretical framework for strain estimation in optical coherence elastography (OCE), based on a statistical analysis of displacement measurements obtained from a mechanically loaded sample. We define strain sensitivity, signal-to-noise ratio and dynamic range, and derive estimates of strain using three methods: finite difference, ordinary least squares and weighted least squares, the latter implemented for the first time in OCE. We compare theoretical predictions with experimental results and demonstrate a ~12 dB improvement in strain sensitivity using weighted least squares compared to finite difference strain estimation and a ~4 dB improvement over ordinary least squares strain estimation. We present strain images (i.e., elastograms) of tissue-mimicking phantoms and excised porcine airway, demonstrating in each case clear contrast based on the sample's elasticity.

Citing Articles

Phase-restoring subpixel image registration: enhancing motion detection performance in Fourier-domain optical coherence tomography.

Li H, Tan B, Pandiyan V, Barathi V, Sabesan R, Schmetterer L J Phys D Appl Phys. 2025; 58(14):145102.

PMID: 39989502 PMC: 11843479. DOI: 10.1088/1361-6463/adb3b4.


Geophysics-Inspired Nonlinear Stress-Strain Law for Biological Tissues and Its Applications in Compression Optical Coherence Elastography.

Zaitsev V, Matveev L, Matveyev A, Plekhanov A, Gubarkova E, Kiseleva E Materials (Basel). 2024; 17(20).

PMID: 39459728 PMC: 11509212. DOI: 10.3390/ma17205023.


A novel stress sensor enables accurate estimation of micro-scale tissue mechanics in quantitative micro-elastography.

Metzner K, Fang Q, Sanderson R, Yeow Y, Green C, Abdul-Aziz F APL Bioeng. 2024; 8(3):036115.

PMID: 39319307 PMC: 11421860. DOI: 10.1063/5.0220309.


Dynamic evaluation of corneal cross-linking and osmotic diffusion effects using optical coherence elastography.

Frigelli M, Buchler P, Kling S Sci Rep. 2024; 14(1):16614.

PMID: 39025900 PMC: 11258322. DOI: 10.1038/s41598-024-67278-1.


stress estimation in quantitative micro-elastography.

Navaeipour F, Hepburn M, Li J, Metzner K, Amos S, Vahala D Biomed Opt Express. 2024; 15(6):3609-3626.

PMID: 38867802 PMC: 11166433. DOI: 10.1364/BOE.522002.


References
1.
Szkulmowska A, Szkulmowski M, Kowalczyk A, Wojtkowski M . Phase-resolved Doppler optical coherence tomography--limitations and improvements. Opt Lett. 2008; 33(13):1425-7. DOI: 10.1364/ol.33.001425. View

2.
Chan R, Chau A, Karl W, Nadkarni S, Khalil A, Iftimia N . OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt Express. 2009; 12(19):4558-72. DOI: 10.1364/opex.12.004558. View

3.
Han S, El-Abbadi N, Hanna N, Mahmood U, Mina-Araghi R, Jung W . Evaluation of tracheal imaging by optical coherence tomography. Respiration. 2005; 72(5):537-41. DOI: 10.1159/000087680. View

4.
Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X . Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991; 13(2):111-34. DOI: 10.1177/016173469101300201. View

5.
Kennedy B, Hillman T, Curatolo A, Sampson D . Speckle reduction in optical coherence tomography by strain compounding. Opt Lett. 2010; 35(14):2445-7. DOI: 10.1364/OL.35.002445. View