» Articles » PMID: 22855497

Human Endogenous Retrovirus K Gag Coassembles with HIV-1 Gag and Reduces the Release Efficiency and Infectivity of HIV-1

Overview
Journal J Virol
Date 2012 Aug 3
PMID 22855497
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.

Citing Articles

Human endogenous retroviruses and exogenous viral infections.

Bao C, Gao Q, Xiang H, Shen Y, Chen Q, Gao Q Front Cell Infect Microbiol. 2024; 14:1439292.

PMID: 39397863 PMC: 11466896. DOI: 10.3389/fcimb.2024.1439292.


Antibodies against endogenous retroviruses.

Chisca M, Larouche J, Xing Q, Kassiotis G Immunol Rev. 2024; 328(1):300-313.

PMID: 39152687 PMC: 11659944. DOI: 10.1111/imr.13378.


Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review.

Hossain M, Nyame P, Monde K Biomolecules. 2024; 14(3).

PMID: 38540701 PMC: 10968565. DOI: 10.3390/biom14030280.


Interaction of TSG101 with the PTAP Motif in Distinct Locations of Gag Determines the Incorporation of HTLV-1 Env into the Retroviral Virion.

Maeda Y, Monde K, Terasawa H, Tanaka Y, Sawa T Int J Mol Sci. 2023; 24(22).

PMID: 38003710 PMC: 10671467. DOI: 10.3390/ijms242216520.


Human Endogenous Retrovirus, SARS-CoV-2, and HIV Promote PAH via Inflammation and Growth Stimulation.

Wang D, Gomes M, Mo Y, Prohaska C, Zhang L, Chelvanambi S Int J Mol Sci. 2023; 24(8).

PMID: 37108634 PMC: 10138839. DOI: 10.3390/ijms24087472.


References
1.
Salemi M, de Oliveira T, Courgnaud V, Moulton V, Holland B, Cassol S . Mosaic genomes of the six major primate lentivirus lineages revealed by phylogenetic analyses. J Virol. 2003; 77(13):7202-13. PMC: 164811. DOI: 10.1128/jvi.77.13.7202-7213.2003. View

2.
Lefebvre G, Desfarges S, Uyttebroeck F, Munoz M, Beerenwinkel N, Rougemont J . Analysis of HIV-1 expression level and sense of transcription by high-throughput sequencing of the infected cell. J Virol. 2011; 85(13):6205-11. PMC: 3126515. DOI: 10.1128/JVI.00252-11. View

3.
Hogue I, Hoppe A, Ono A . Quantitative fluorescence resonance energy transfer microscopy analysis of the human immunodeficiency virus type 1 Gag-Gag interaction: relative contributions of the CA and NC domains and membrane binding. J Virol. 2009; 83(14):7322-36. PMC: 2704781. DOI: 10.1128/JVI.02545-08. View

4.
Contreras-Galindo R, Kaplan M, Markovitz D, Lorenzo E, Yamamura Y . Detection of HERV-K(HML-2) viral RNA in plasma of HIV type 1-infected individuals. AIDS Res Hum Retroviruses. 2006; 22(10):979-84. DOI: 10.1089/aid.2006.22.979. View

5.
Balasubramaniam M, Freed E . New insights into HIV assembly and trafficking. Physiology (Bethesda). 2011; 26(4):236-51. PMC: 3467973. DOI: 10.1152/physiol.00051.2010. View