» Articles » PMID: 22848585

Increased Angiogenesis and Improved Left Ventricular Function After Transplantation of Myoblasts Lacking the MyoD Gene into Infarcted Myocardium

Overview
Journal PLoS One
Date 2012 Aug 1
PMID 22848585
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Skeletal myoblast transplantation has therapeutic potential for repairing damaged heart. However, the optimal conditions for this transplantation are still unclear. Recently, we demonstrated that satellite cell-derived myoblasts lacking the MyoD gene (MyoD(-/-)), a master transcription factor for skeletal muscle myogenesis, display increased survival and engraftment compared to wild-type controls following transplantation into murine skeletal muscle. In this study, we compare cell survival between wild-type and MyoD(-/-) myoblasts after transplantation into infarcted heart. We demonstrate that MyoD(-/-) myoblasts display greater resistance to hypoxia, engraft with higher efficacy, and show a larger improvement in ejection fraction than wild-type controls. Following transplantation, the majority of MyoD(-/-) and wild-type myoblasts form skeletal muscle fibers while cardiomyocytes do not. Importantly, the transplantation of MyoD(-/-) myoblasts induces a high degree of angiogenesis in the area of injury. DNA microarray data demonstrate that paracrine angiogenic factors, such as stromal cell-derived factor-1 (SDF-1) and placental growth factor (PlGF), are up-regulated in MyoD(-/-) myoblasts. In addition, over-expression and gene knockdown experiments demonstrate that MyoD negatively regulates gene expression of these angiogenic factors. These results indicate that MyoD(-/-) myoblasts impart beneficial effects after transplantation into an infarcted heart, potentially due to the secretion of paracrine angiogenic factors and enhanced angiogenesis in the area of injury. Therefore, our data provide evidence that a genetically engineered myoblast cell type with suppressed MyoD function is useful for therapeutic stem cell transplantation.

Citing Articles

Vascular and Perivascular Role in the Regulation of Angiogenesis: Impact on Arteriovenous Fistula Maturation.

Xia F, Rai V, Agrawal D Arch Intern Med Res. 2024; 7(4):284-296.

PMID: 39698202 PMC: 11654682. DOI: 10.26502/aimr.0185.


Fibrin-Enriched Cardiac Extracellular Matrix Hydrogel Promotes Angiogenesis.

Shaik R, Xu J, Wang Y, Hong Y, Zhang G ACS Biomater Sci Eng. 2023; 9(2):877-888.

PMID: 36630688 PMC: 10064974. DOI: 10.1021/acsbiomaterials.2c01148.


Electrospun Fiber-Coated Human Amniotic Membrane: A Potential Angioinductive Scaffold for Ischemic Tissue Repair.

Hasmad H, Idrus R, Sulaiman N, Lokanathan Y Int J Mol Sci. 2022; 23(3).

PMID: 35163664 PMC: 8836161. DOI: 10.3390/ijms23031743.


Biological and Pro-Angiogenic Properties of Genetically Modified Human Primary Myoblasts Overexpressing Placental Growth Factor in In Vitro and In Vivo Studies.

Zimna A, Wiernicki B, Kolanowski T, Rozwadowska N, Malcher A, Labedz W Arch Immunol Ther Exp (Warsz). 2017; 66(2):145-159.

PMID: 28951939 PMC: 5851700. DOI: 10.1007/s00005-017-0486-2.


Tracking the Fate of Muscle-derived Stem Cells: an Insight into the Distribution and Mode of Action.

Park H, Choi G, Hahn S, Yoo Y, Jung I, Lee T Vasc Specialist Int. 2015; 30(1):11-8.

PMID: 26217610 PMC: 4480300. DOI: 10.5758/vsi.2014.30.1.11.


References
1.
Watanabe S, Hirai H, Asakura Y, Tastad C, Verma M, Keller C . MyoD gene suppression by Oct4 is required for reprogramming in myoblasts to produce induced pluripotent stem cells. Stem Cells. 2011; 29(3):505-16. PMC: 3734538. DOI: 10.1002/stem.598. View

2.
Hagege A, Marolleau J, Vilquin J, Alheritiere A, Peyrard S, Duboc D . Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation. 2006; 114(1 Suppl):I108-13. DOI: 10.1161/CIRCULATIONAHA.105.000521. View

3.
Pelacho B, Nakamura Y, Zhang J, Ross J, Heremans Y, Nelson-Holte M . Multipotent adult progenitor cell transplantation increases vascularity and improves left ventricular function after myocardial infarction. J Tissue Eng Regen Med. 2007; 1(1):51-9. DOI: 10.1002/term.7. View

4.
Shintani Y, Fukushima S, Varela-Carver A, Lee J, Coppen S, Takahashi K . Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. J Mol Cell Cardiol. 2009; 47(2):288-95. DOI: 10.1016/j.yjmcc.2009.05.009. View

5.
Uemura R, Xu M, Ahmad N, Ashraf M . Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006; 98(11):1414-21. DOI: 10.1161/01.RES.0000225952.61196.39. View