» Articles » PMID: 22806584

Stable, High-affinity Streptavidin Monomer for Protein Labeling and Monovalent Biotin Detection

Overview
Publisher Wiley
Specialty Biochemistry
Date 2012 Jul 19
PMID 22806584
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

The coupling between the quaternary structure, stability and function of streptavidin makes it difficult to engineer a stable, high affinity monomer for biotechnology applications. For example, the binding pocket of streptavidin tetramer is comprised of residues from multiple subunits, which cannot be replicated in a single domain protein. However, rhizavidin from Rhizobium etli was recently shown to bind biotin with high affinity as a dimer without the hydrophobic tryptophan lid donated by an adjacent subunit. In particular, the binding site of rhizavidin uses residues from a single subunit to interact with bound biotin. We therefore postulated that replacing the binding site residues of streptavidin monomer with corresponding rhizavidin residues would lead to the design of a high affinity monomer useful for biotechnology applications. Here, we report the construction and characterization of a structural monomer, mSA, which combines the streptavidin and rhizavidin sequences to achieve optimized biophysical properties. First, the biotin affinity of mSA (K(d) = 2.8 nM) is the highest among nontetrameric streptavidin, allowing sensitive monovalent detection of biotinylated ligands. The monomer also has significantly higher stability (T(m) = 59.8 °C) and solubility than all other previously engineered monomers to ensure the molecule remains folded and functional during its application. Using fluorescence correlation spectroscopy, we show that mSA binds biotinylated targets as a monomer. We also show that the molecule can be used as a genetic tag to introduce biotin binding capability to a heterologous protein. For example, recombinantly fusing the monomer to a cell surface receptor allows direct labeling and imaging of transfected cells using biotinylated fluorophores. A stable and functional streptavidin monomer, such as mSA, should be a useful reagent for designing novel detection systems based on monovalent biotin interaction.

Citing Articles

CD32B1, a versatile non-signaling antibody-binding scaffold for enhanced T cell adhesion to tumor stromal cognate antigens.

Feigelson S, Dadosh T, Levi N, Sapoznikov A, Weinstein-Marom H, Blokon-Kogan D Front Immunol. 2025; 16:1398757.

PMID: 39995660 PMC: 11847833. DOI: 10.3389/fimmu.2025.1398757.


Open architecture of archaea MCM and dsDNA complexes resolved using monodispersed streptavidin affinity CryoEM.

Ma J, Yi G, Ye M, MacGregor-Chatwin C, Sheng Y, Lu Y Nat Commun. 2024; 15(1):10304.

PMID: 39604363 PMC: 11603195. DOI: 10.1038/s41467-024-53745-w.


Anti-IL-1RAP scFv-mSA-S19-TAT fusion carrier as a multifunctional platform for versatile delivery of biotinylated payloads to myeloid leukemia cells.

Farokhi-Fard A, Rahmati S, Hashemi Aval N, Barkhordari F, Bayat E, Komijani S Sci Rep. 2024; 14(1):25080.

PMID: 39443595 PMC: 11500005. DOI: 10.1038/s41598-024-76851-7.


The Nedd4L ubiquitin ligase is activated by FCHO2-generated membrane curvature.

Sakamoto Y, Uezu A, Kikuchi K, Kang J, Fujii E, Moroishi T EMBO J. 2024; 43(23):5883-5909.

PMID: 39402328 PMC: 11612235. DOI: 10.1038/s44318-024-00268-1.


Genome-wide mapping of native co-localized G4s and R-loops in living cells.

Liu T, Shen X, Ren Y, Lu H, Liu Y, Chen C Elife. 2024; 13.

PMID: 39392462 PMC: 11469684. DOI: 10.7554/eLife.99026.