» Articles » PMID: 22805569

Accelerated Single Photon Emission from Dye Molecule-driven Nanoantennas Assembled on DNA

Overview
Journal Nat Commun
Specialty Biology
Date 2012 Jul 19
PMID 22805569
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

A photon interacts efficiently with an atom when its frequency corresponds exactly to the energy between two eigenstates. But at the nanoscale, homogeneous and inhomogeneous broadenings strongly hinder the ability of solid-state systems to absorb, scatter or emit light. By compensating the impedance mismatch between visible wavelengths and nanometre-sized objects, optical antennas can enhance light-matter interactions over a broad frequency range. Here we use a DNA template to introduce a single dye molecule in gold particle dimers that act as antennas for light with spontaneous emission rates enhanced by up to two orders of magnitude and single photon emission statistics. Quantitative agreement between measured rate enhancements and theoretical calculations indicate a nanometre control over the emitter-particle position while 10 billion copies of the target geometry are synthesized in parallel. Optical antennas can thus tune efficiently the photo-physical properties of nano-objects by precisely engineering their electromagnetic environment.

Citing Articles

Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence.

Roy P, Zhu S, Claude J, Liu J, Wenger J ACS Nano. 2023; 17(22):22418-22429.

PMID: 37931219 PMC: 10690780. DOI: 10.1021/acsnano.3c05008.


Controlled synthesis of gold nanorod dimers with end-to-end configurations.

Lu X, Punj D, Orrit M RSC Adv. 2022; 12(21):13464-13471.

PMID: 35527728 PMC: 9069271. DOI: 10.1039/d2ra01288j.


Biosensing with a scanning planar Yagi-Uda antenna.

Soltani N, Rabbany Esfahany E, Druzhinin S, Schulte G, Muller J, Butz B Biomed Opt Express. 2022; 13(2):539-548.

PMID: 35284167 PMC: 8884229. DOI: 10.1364/BOE.445402.


DNA Origami Nanoantennas for Fluorescence Enhancement.

Glembockyte V, Grabenhorst L, Trofymchuk K, Tinnefeld P Acc Chem Res. 2021; 54(17):3338-3348.

PMID: 34435769 PMC: 9674200. DOI: 10.1021/acs.accounts.1c00307.


Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field.

Ge D, Marguet S, Issa A, Jradi S, Nguyen T, Nahra M Nat Commun. 2020; 11(1):3414.

PMID: 32641727 PMC: 7343831. DOI: 10.1038/s41467-020-17248-8.


References
1.
Rolly B, Stout B, Bidault S, Bonod N . Crucial role of the emitter-particle distance on the directivity of optical antennas. Opt Lett. 2011; 36(17):3368-70. DOI: 10.1364/OL.36.003368. View

2.
Lim D, Jeon K, Kim H, Nam J, Suh Y . Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater. 2009; 9(1):60-7. DOI: 10.1038/nmat2596. View

3.
Busson M, Rolly B, Stout B, Bonod N, Larquet E, Polman A . Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand. Nano Lett. 2011; 11(11):5060-5. DOI: 10.1021/nl2032052. View

4.
Boriskina S, Reinhard B . Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Proc Natl Acad Sci U S A. 2011; 108(8):3147-51. PMC: 3044402. DOI: 10.1073/pnas.1016181108. View

5.
Kuhn S, Hakanson U, Rogobete L, Sandoghdar V . Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett. 2006; 97(1):017402. DOI: 10.1103/PhysRevLett.97.017402. View