» Articles » PMID: 22796963

The Mechanism of Patellamide Macrocyclization Revealed by the Characterization of the PatG Macrocyclase Domain

Abstract

Peptide macrocycles are found in many biologically active natural products. Their versatility, resistance to proteolysis and ability to traverse membranes has made them desirable molecules. Although technologies exist to synthesize such compounds, the full extent of diversity found among natural macrocycles has yet to be achieved synthetically. Cyanobactins are ribosomal peptide macrocycles encompassing an extraordinarily diverse range of ring sizes, amino acids and chemical modifications. We report the structure, biochemical characterization and initial engineering of the PatG macrocyclase domain of Prochloron sp. from the patellamide pathway that catalyzes the macrocyclization of linear peptides. The enzyme contains insertions in the subtilisin fold to allow it to recognize a three-residue signature, bind substrate in a preorganized and unusual conformation, shield an acyl-enzyme intermediate from water and catalyze peptide bond formation. The ability to macrocyclize a broad range of nonactivated substrates has wide biotechnology applications.

Citing Articles

Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis.

Eslami S, van der Donk W ACS Bio Med Chem Au. 2024; 4(1):20-36.

PMID: 38404746 PMC: 10885120. DOI: 10.1021/acsbiomedchemau.3c00059.


An Autocatalytic Peptide Cyclase Improves Fidelity and Yield of Circular Peptides In Vivo and In Vitro.

Lacerna 2nd N, Cong Y, Schmidt E ACS Synth Biol. 2024; 13(1):394-401.

PMID: 38194299 PMC: 10804404. DOI: 10.1021/acssynbio.3c00645.


Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization.

Alexander A, Elshahawi S Chembiochem. 2023; 24(17):e202300372.

PMID: 37338668 PMC: 10496146. DOI: 10.1002/cbic.202300372.


Nature-inspired protein ligation and its applications.

Pihl R, Zheng Q, David Y Nat Rev Chem. 2023; 7(4):234-255.

PMID: 37117416 PMC: 10659114. DOI: 10.1038/s41570-023-00468-z.


Engineering lanthipeptides by introducing a large variety of RiPP modifications to obtain new-to-nature bioactive peptides.

Fu Y, Xu Y, Ruijne F, Kuipers O FEMS Microbiol Rev. 2023; 47(3).

PMID: 37096385 PMC: 10373908. DOI: 10.1093/femsre/fuad017.


References
1.
Katoh T, Goto Y, Reza M, Suga H . Ribosomal synthesis of backbone macrocyclic peptides. Chem Commun (Camb). 2011; 47(36):9946-58. DOI: 10.1039/c1cc12647d. View

2.
Long P, Dunlap W, Battershill C, Jaspars M . Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. Chembiochem. 2005; 6(10):1760-5. DOI: 10.1002/cbic.200500210. View

3.
Murshudov G, Vagin A, Dodson E . Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997; 53(Pt 3):240-55. DOI: 10.1107/S0907444996012255. View

4.
Cane D, WALSH C . The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol. 2000; 6(12):R319-25. DOI: 10.1016/s1074-5521(00)80001-0. View

5.
Donia M, Hathaway B, Sudek S, Haygood M, Rosovitz M, Ravel J . Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat Chem Biol. 2006; 2(12):729-35. DOI: 10.1038/nchembio829. View