» Articles » PMID: 22795220

Information Theoretic Approaches to Understanding Circuit Function

Overview
Specialties Biology
Neurology
Date 2012 Jul 17
PMID 22795220
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The analysis of stimulus/response patterns using information theoretic approaches requires the full probability distribution of stimuli and response. Recent progress in using information-based tools to understand circuit function has advanced understanding of neural coding at the single cell and population level. In advances over traditional reverse correlation approaches, the determination of receptive fields using information as a metric has allowed novel insights into stimulus representation and transformation. The application of maximum entropy methods to population codes has opened a rich exploration of the internal structure of these codes, revealing stimulus-driven functional connectivity. We speculate about the prospects and limitations of information as a general tool for dissecting neural circuits and relating their structure and function.

Citing Articles

Sampling bias corrections for accurate neural measures of redundant, unique, and synergistic information.

Kocillari L, Lorenz G, Engel N, Celotto M, Curreli S, Blanco Malerba S bioRxiv. 2024; .

PMID: 38895197 PMC: 11185652. DOI: 10.1101/2024.06.04.597303.


Information-theoretical analysis of the neural code for decoupled face representation.

Ibanez-Berganza M, Lucibello C, Mariani L, Pezzulo G PLoS One. 2024; 19(1):e0295054.

PMID: 38277355 PMC: 10817192. DOI: 10.1371/journal.pone.0295054.


Computational methods to study information processing in neural circuits.

Koren V, Bondanelli G, Panzeri S Comput Struct Biotechnol J. 2023; 21:910-922.

PMID: 36698970 PMC: 9851868. DOI: 10.1016/j.csbj.2023.01.009.


Skilled motor control of an inverted pendulum implies low entropy of states but high entropy of actions.

Catenacci Volpi N, Greaves M, Trendafilov D, Salge C, Pezzulo G, Polani D PLoS Comput Biol. 2023; 19(1):e1010810.

PMID: 36608159 PMC: 9851554. DOI: 10.1371/journal.pcbi.1010810.


Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries.

Hernandez D, Sober S, Nemenman I Elife. 2022; 11.

PMID: 35315769 PMC: 8989415. DOI: 10.7554/eLife.68192.


References
1.
Quian Quiroga R, Panzeri S . Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci. 2009; 10(3):173-85. DOI: 10.1038/nrn2578. View

2.
Agarwala E, Chiel H, Thomas P . Pursuit of food versus pursuit of information in a Markovian perception-action loop model of foraging. J Theor Biol. 2012; 304:235-72. DOI: 10.1016/j.jtbi.2012.02.016. View

3.
Oizumi M, Ishii T, Ishibashi K, Hosoya T, Okada M . Mismatched decoding in the brain. J Neurosci. 2010; 30(13):4815-26. PMC: 6632316. DOI: 10.1523/JNEUROSCI.4360-09.2010. View

4.
Truccolo W, Eden U, Fellows M, Donoghue J, Brown E . A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol. 2004; 93(2):1074-89. DOI: 10.1152/jn.00697.2004. View

5.
Montani F, Ince R, Senatore R, Arabzadeh E, Diamond M, Panzeri S . The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex. Philos Trans A Math Phys Eng Sci. 2009; 367(1901):3297-310. DOI: 10.1098/rsta.2009.0082. View