» Articles » PMID: 22783158

Bursting Neurons and Ultrasound Avoidance in Crickets

Overview
Journal Front Neurosci
Date 2012 Jul 12
PMID 22783158
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes - bursts - that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing - the auditory receptor - already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2's sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

Citing Articles

Flupyradifurone, imidacloprid and clothianidin disrupt the auditory processing in the locust CNS.

Christian M, Kraft M, Wilknitz P, Nowotny M, Schoneich S J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2025; .

PMID: 39939492 DOI: 10.1007/s00359-025-01735-8.


Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance.

Yang Y, Zhu F, Zhang X, Chen P, Wang Y, Zhu J Nat Commun. 2024; 15(1):4318.

PMID: 38773067 PMC: 11109161. DOI: 10.1038/s41467-024-48399-7.


Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features.

Ishii T, Hosoya T PLoS Comput Biol. 2020; 16(11):e1007726.

PMID: 33156853 PMC: 7738174. DOI: 10.1371/journal.pcbi.1007726.


Differences in Sodium Channel Densities in the Apical Dendrites of Pyramidal Cells of the Electrosensory Lateral Line Lobe.

Motipally S, Allen K, Williamson D, Marsat G Front Neural Circuits. 2019; 13:41.

PMID: 31213991 PMC: 6558084. DOI: 10.3389/fncir.2019.00041.


Burst Firing in the Electrosensory System of Gymnotiform Weakly Electric Fish: Mechanisms and Functional Roles.

Metzen M, Krahe R, Chacron M Front Comput Neurosci. 2016; 10:81.

PMID: 27531978 PMC: 4969294. DOI: 10.3389/fncom.2016.00081.


References
1.
Holderied M, Von Helversen O . Echolocation range and wingbeat period match in aerial-hawking bats. Proc Biol Sci. 2003; 270(1530):2293-9. PMC: 1691500. DOI: 10.1098/rspb.2003.2487. View

2.
Sabourin P, Pollack G . Temporal coding by populations of auditory receptor neurons. J Neurophysiol. 2010; 103(3):1614-21. DOI: 10.1152/jn.00621.2009. View

3.
Brodfuehrer P, Hoy R . Integration of ultrasound and flight inputs on descending neurons in the cricket brain. J Exp Biol. 1989; 145:157-71. DOI: 10.1242/jeb.145.1.157. View

4.
Yager D . Structure, development, and evolution of insect auditory systems. Microsc Res Tech. 1999; 47(6):380-400. DOI: 10.1002/(SICI)1097-0029(19991215)47:6<380::AID-JEMT3>3.0.CO;2-P. View

5.
Sompolinsky H, Yoon H, Kang K, Shamir M . Population coding in neuronal systems with correlated noise. Phys Rev E Stat Nonlin Soft Matter Phys. 2001; 64(5 Pt 1):051904. DOI: 10.1103/PhysRevE.64.051904. View