» Articles » PMID: 22761314

Modeling Human Cortical Development in Vitro Using Induced Pluripotent Stem Cells

Overview
Specialty Science
Date 2012 Jul 5
PMID 22761314
Citations 273
Authors
Affiliations
Soon will be listed here.
Abstract

Human induced pluripotent stem cells (hiPSCs) are emerging as a tool for understanding human brain development at cellular, molecular, and genomic levels. Here we show that hiPSCs grown in suspension in the presence of rostral neuralizing factors can generate 3D structures containing polarized radial glia, intermediate progenitors, and a spectrum of layer-specific cortical neurons reminiscent of their organization in vivo. The hiPSC-derived multilayered structures express a gene expression profile typical of the embryonic telencephalon but not that of other CNS regions. Their transcriptome is highly enriched in transcription factors controlling the specification, growth, and patterning of the dorsal telencephalon and displays highest correlation with that of the early human cerebral cortical wall at 8-10 wk after conception. Thus, hiPSC are capable of enacting a transcriptional program specifying human telencephalic (pallial) development. This model will allow the study of human brain development as well as disorders of the human cerebral cortex.

Citing Articles

Modeling the Effect of Cannabinoid Exposure During Human Neurodevelopment Using Bidimensional and Tridimensional Cultures.

Estudillo E, Castillo-Arellano J, Martinez E, Rangel-Lopez E, Lopez-Ornelas A, Magana-Maldonado R Cells. 2025; 14(2).

PMID: 39851498 PMC: 11763397. DOI: 10.3390/cells14020070.


Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders.

Yang Z, Teaney N, Buttermore E, Sahin M, Afshar-Saber W Front Neurosci. 2025; 18:1524577.

PMID: 39844857 PMC: 11750789. DOI: 10.3389/fnins.2024.1524577.


Reliability of high-quantity human brain organoids for modeling microcephaly, glioma invasion and drug screening.

Ramani A, Pasquini G, Gerkau N, Jadhav V, Vinchure O, Altinisik N Nat Commun. 2024; 15(1):10703.

PMID: 39702477 PMC: 11659410. DOI: 10.1038/s41467-024-55226-6.


Cell type specification and diversity in subpallial organoids.

Pavon N, Sun Y, Pak C Front Genet. 2024; 15:1440583.

PMID: 39391063 PMC: 11465425. DOI: 10.3389/fgene.2024.1440583.


Sequencing-based study of neural induction of human dental pulp stem cells.

Takaoka S, Uchida F, Ishikawa H, Toyomura J, Ohyama A, Matsumura H Hum Cell. 2024; 37(6):1638-1648.

PMID: 39210197 DOI: 10.1007/s13577-024-01121-7.


References
1.
Rakic P . Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009; 10(10):724-35. PMC: 2913577. DOI: 10.1038/nrn2719. View

2.
Bishop K, Rubenstein J, OLeary D . Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci. 2002; 22(17):7627-38. PMC: 6757966. View

3.
Hevner R . Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development. J Neuropathol Exp Neurol. 2007; 66(2):101-9. DOI: 10.1097/nen.0b013e3180301c06. View

4.
Molnar Z, Metin C, Stoykova A, Tarabykin V, Price D, Francis F . Comparative aspects of cerebral cortical development. Eur J Neurosci. 2006; 23(4):921-34. PMC: 1931431. DOI: 10.1111/j.1460-9568.2006.04611.x. View

5.
Hansen D, Rubenstein J, Kriegstein A . Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron. 2011; 70(4):645-60. PMC: 3124445. DOI: 10.1016/j.neuron.2011.05.006. View