» Articles » PMID: 22754737

Review of Advanced Imaging Techniques

Overview
Journal J Pathol Inform
Date 2012 Jul 4
PMID 22754737
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies") at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

Citing Articles

Multiple scattering suppression for optical coherence tomography measurement using the B-scan-wise multi-focus averaging method.

Zhu Y, Zhu L, Lim Y, Makita S, Guo Y, Yasuno Y Biomed Opt Express. 2024; 15(7):4044-4064.

PMID: 39022550 PMC: 11249682. DOI: 10.1364/BOE.524894.


Navigating the Frontier: Emerging Techniques for Detecting Microvascular Complications in Type 2 Diabetes Mellitus: A Comprehensive Review.

Raut S, Acharya S, Deolikar V, Mahajan S Cureus. 2024; 16(1):e53279.

PMID: 38435878 PMC: 10905308. DOI: 10.7759/cureus.53279.


Quantification and visualization of metastatic lung tumors in mice.

Lee H, Kim S, Park S, Jung W, Kang J Toxicol Res. 2022; 38(4):503-510.

PMID: 36277365 PMC: 9532496. DOI: 10.1007/s43188-022-00134-4.


Molecular changes tracking through multiscale fluorescence microscopy differentiate Meningioma grades and non-tumoral brain tissues.

Mehidine H, Refregiers M, Jamme F, Varlet P, Juchaux M, Devaux B Sci Rep. 2021; 11(1):3816.

PMID: 33589651 PMC: 7884789. DOI: 10.1038/s41598-020-78678-4.


Leveraging multimodal microscopy to optimize deep learning models for cell segmentation.

Cameron W, Bennett A, Bui C, Chang H, Rocheleau J APL Bioeng. 2021; 5(1):016101.

PMID: 33415313 PMC: 7785326. DOI: 10.1063/5.0027993.


References
1.
Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W . Optical coherence tomography. Science. 1991; 254(5035):1178-81. PMC: 4638169. DOI: 10.1126/science.1957169. View

2.
Salome R, Kremer Y, Dieudonne S, Leger J, Krichevsky O, Wyart C . Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J Neurosci Methods. 2006; 154(1-2):161-74. DOI: 10.1016/j.jneumeth.2005.12.010. View

3.
Yang V, Tang S, Gordon M, Qi B, Gardiner G, Cirocco M . Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointest Endosc. 2005; 61(7):879-90. DOI: 10.1016/s0016-5107(05)00323-8. View

4.
Wang P, Bista R, Khalbuss W, Qiu W, Uttam S, Staton K . Nanoscale nuclear architecture for cancer diagnosis beyond pathology via spatial-domain low-coherence quantitative phase microscopy. J Biomed Opt. 2011; 15(6):066028. PMC: 3025597. DOI: 10.1117/1.3523618. View

5.
Bouma B, Tearney G, Compton C, Nishioka N . High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest Endosc. 2000; 51(4 Pt 1):467-74. DOI: 10.1016/s0016-5107(00)70449-4. View