Zhou X, Cao H, Fang S, Chow R, Tang K, Majety M
Nat Immunol. 2023; 24(9):1499-1510.
PMID: 37500885
PMC: 11344484.
DOI: 10.1038/s41590-023-01571-5.
Yu L, Sun M, Zhang Q, Zhou Q, Wang Y
Front Immunol. 2022; 13:982026.
PMID: 36159789
PMC: 9498063.
DOI: 10.3389/fimmu.2022.982026.
Sakowska J, Arcimowicz L, Jankowiak M, Papak I, Markiewicz A, Dziubek K
Front Immunol. 2022; 13:793234.
PMID: 35634292
PMC: 9140757.
DOI: 10.3389/fimmu.2022.793234.
Ahmed M, Tezera L, Elkington P, Leslie A
Eur Respir J. 2022; 60(5).
PMID: 35595321
PMC: 9647068.
DOI: 10.1183/13993003.02512-2021.
Ishihara S, Sato T, Fujikado N, Miyazaki H, Yoshimoto T, Yamamoto H
Commun Biol. 2022; 5(1):206.
PMID: 35246619
PMC: 8897436.
DOI: 10.1038/s42003-022-03129-x.
The Role of the Tumor Microenvironment and Treatment Strategies in Colorectal Cancer.
Chen Y, Zheng X, Wu C
Front Immunol. 2021; 12:792691.
PMID: 34925375
PMC: 8674693.
DOI: 10.3389/fimmu.2021.792691.
Potential protective role of the anti-PD-1 blockade against SARS-CoV-2 infection.
Awadasseid A, Yin Q, Wu Y, Zhang W
Biomed Pharmacother. 2021; 142:111957.
PMID: 34339917
PMC: 8315943.
DOI: 10.1016/j.biopha.2021.111957.
CTLA-4 in Regulatory T Cells for Cancer Immunotherapy.
Sobhani N, Tardiel-Cyril D, Davtyan A, Generali D, Roudi R, Li Y
Cancers (Basel). 2021; 13(6).
PMID: 33809974
PMC: 8005092.
DOI: 10.3390/cancers13061440.
SARS-CoV-2 infection: The role of PD-1/PD-L1 and CTLA-4 axis.
Aghbash P, Eslami N, Shamekh A, Entezari-Maleki T, Baghi H
Life Sci. 2021; 270:119124.
PMID: 33508291
PMC: 7838580.
DOI: 10.1016/j.lfs.2021.119124.
Targeting immune checkpoints in hematological malignancies.
Salik B, Smyth M, Nakamura K
J Hematol Oncol. 2020; 13(1):111.
PMID: 32787882
PMC: 7425174.
DOI: 10.1186/s13045-020-00947-6.
CD28-Dependent CTLA-4 Expression Fine-Tunes the Activation of Human Th17 Cells.
Krummey S, Hartigan C, Liu D, Ford M
iScience. 2020; 23(4):100912.
PMID: 32203908
PMC: 7096747.
DOI: 10.1016/j.isci.2020.100912.
Vitamin D Increases CTLA-4 Gene Expression in Patients with Mild to Moderate Ulcerative Colitis.
Sharifi A, Vahedi H, Honarvar M, Alipoor B, Nikniaz Z, Rafiei H
Middle East J Dig Dis. 2019; 11(4):199-204.
PMID: 31824622
PMC: 6895856.
DOI: 10.15171/mejdd.2019.149.
MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging.
Demeyer A, Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D
Front Immunol. 2019; 10:2330.
PMID: 31632405
PMC: 6779721.
DOI: 10.3389/fimmu.2019.02330.
MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner.
Demeyer A, Skordos I, Driege Y, Kreike M, Hochepied T, Baens M
Front Immunol. 2019; 10:1898.
PMID: 31474984
PMC: 6702287.
DOI: 10.3389/fimmu.2019.01898.
CTLA-4 antibody ipilimumab negatively affects CD4 T-cell responses in vitro.
Rosskopf S, Leitner J, Zlabinger G, Steinberger P
Cancer Immunol Immunother. 2019; 68(8):1359-1368.
PMID: 31332464
PMC: 6683241.
DOI: 10.1007/s00262-019-02369-x.
Leukemic B Cell CTLA-4 Suppresses Costimulation of T Cells.
Do P, Beckwith K, Cheney C, Tran M, Beaver L, Griffin B
J Immunol. 2019; 202(9):2806-2816.
PMID: 30910862
PMC: 6478536.
DOI: 10.4049/jimmunol.1801359.
Tipping the balance: inhibitory checkpoints in intestinal homeostasis.
Joosse M, Nederlof I, Walker L, Samsom J
Mucosal Immunol. 2018; 12(1):21-35.
PMID: 30498201
DOI: 10.1038/s41385-018-0113-5.
Not All Immune Checkpoints Are Created Equal.
de Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, Steinberger P
Front Immunol. 2018; 9:1909.
PMID: 30233564
PMC: 6127213.
DOI: 10.3389/fimmu.2018.01909.
GATA3, HDAC6, and BCL6 Regulate FOXP3+ Treg Plasticity and Determine Treg Conversion into Either Novel Antigen-Presenting Cell-Like Treg or Th1-Treg.
Xu K, Yang W, Nanayakkara G, Shao Y, Yang F, Hu W
Front Immunol. 2018; 9:45.
PMID: 29434588
PMC: 5790774.
DOI: 10.3389/fimmu.2018.00045.
CTLA-4: a moving target in immunotherapy.
Rowshanravan B, Halliday N, Sansom D
Blood. 2017; 131(1):58-67.
PMID: 29118008
PMC: 6317697.
DOI: 10.1182/blood-2017-06-741033.