» Articles » PMID: 22752167

Methane-cycling Microbial Communities and Methane Emission in Natural and Restored Peatlands

Overview
Date 2012 Jul 4
PMID 22752167
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

We addressed how restoration of forestry-drained peatlands affects CH(4)-cycling microbes. Despite similar community compositions, the abundance of methanogens and methanotrophs was lower in restored than in natural sites and correlated with CH(4) emission. Poor establishment of methanogens may thus explain low CH(4) emissions on restored peatlands even 10 to 12 years after restoration.

Citing Articles

Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture.

Lim J, Wehmeyer H, Heffner T, Aeppli M, Gu W, Kim P FEMS Microbiol Ecol. 2024; 100(3).

PMID: 38327184 PMC: 10872700. DOI: 10.1093/femsec/fiae008.


Response of methanogenic community and their activity to temperature rise in alpine swamp meadow at different water level of the permafrost wetland on Qinghai-Tibet Plateau.

Cui H, Wang Y, Su X, Wei S, Pang S, Zhu Y Front Microbiol. 2023; 14:1181658.

PMID: 37213493 PMC: 10198574. DOI: 10.3389/fmicb.2023.1181658.


Recovery in methanotrophic activity does not reflect on the methane-driven interaction network after peat mining.

Kaupper T, Mendes L, Harnisz M, Krause S, Horn M, Ho A Appl Environ Microbiol. 2020; 87(5).

PMID: 33355115 PMC: 8090869. DOI: 10.1128/AEM.02355-20.


The Response of Microbial Communities to Peatland Drainage and Rewetting. A Review.

Kitson E, Bell N Front Microbiol. 2020; 11:582812.

PMID: 33193221 PMC: 7658402. DOI: 10.3389/fmicb.2020.582812.


Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.

Reumer M, Harnisz M, Lee H, Reim A, Grunert O, Putkinen A Appl Environ Microbiol. 2017; 84(3).

PMID: 29180368 PMC: 5772240. DOI: 10.1128/AEM.02218-17.


References
1.
Kemnitz D, Chin K, Bodelier P, Conrad R . Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol. 2004; 6(5):449-61. DOI: 10.1111/j.1462-2920.2004.00573.x. View

2.
Steinberg L, Regan J . Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol. 2008; 74(21):6663-71. PMC: 2576706. DOI: 10.1128/AEM.00553-08. View

3.
Tuomivirta T, Yrjala K, Fritze H . Quantitative PCR of pmoA using a novel reverse primer correlates with potential methane oxidation in Finnish fen. Res Microbiol. 2009; 160(10):751-6. DOI: 10.1016/j.resmic.2009.09.008. View

4.
Radajewski S, Webster G, Reay D, Morris S, Ineson P, Nedwell D . Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology (Reading). 2002; 148(Pt 8):2331-2342. DOI: 10.1099/00221287-148-8-2331. View

5.
Chen Y, Dumont M, McNamara N, Chamberlain P, Bodrossy L, Stralis-Pavese N . Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol. 2007; 10(2):446-59. DOI: 10.1111/j.1462-2920.2007.01466.x. View