» Articles » PMID: 22751174

Neurovascular Defects and Faulty Amyloid-β Vascular Clearance in Alzheimer's Disease

Overview
Publisher Sage Publications
Specialties Geriatrics
Neurology
Date 2012 Jul 4
PMID 22751174
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

The evidence that neurovascular dysfunction is an integral part of Alzheimer's disease (AD) pathogenesis has continued to emerge in the last decade. Changes in the brain vasculature have been shown to contribute to the onset and progression of the pathological processes associated with AD, such as microvascular reductions, blood brain barrier (BBB) breakdown, and faulty clearance of amyloid β-peptide (Aβ) from the brain. Herein, we review the role of the neurovascular unit and molecular mechanisms in cerebral vascular cells behind the pathogenesis of AD. In particular, we focus on molecular pathways within cerebral vascular cells and the systemic circulation that contribute to BBB dysfunction, brain hypoperfusion, and impaired clearance of Aβ from the brain. We aim to provide a summary of recent research findings implicated in neurovascular defects and faulty Aβ vascular clearance contributing to AD pathogenesis.

Citing Articles

Infarct volume as a predictor and therapeutic target in post-stroke cognitive impairment.

Xu L, Shan D, Wu D Front Med (Lausanne). 2025; 12:1519538.

PMID: 39967599 PMC: 11832508. DOI: 10.3389/fmed.2025.1519538.


From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis.

Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida T Int J Mol Sci. 2024; 25(21).

PMID: 39519272 PMC: 11546801. DOI: 10.3390/ijms252111720.


Angiogenesis is limited by LIC1-mediated lysosomal trafficking.

Johnson D, Colijn S, Richee J, Yano J, Burns M, Davis A Angiogenesis. 2024; 27(4):943-962.

PMID: 39356418 PMC: 11653708. DOI: 10.1007/s10456-024-09951-7.


Functionally distinct pericyte subsets differently regulate amyloid-β deposition in patients with Alzheimer's disease.

Bohannon D, Long D, Okhravi H, Lee S, De Jesus C, Neubert T Brain Pathol. 2024; 35(2):e13282.

PMID: 38932696 PMC: 11835444. DOI: 10.1111/bpa.13282.


Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology.

Pramotton F, Spitz S, Kamm R Adv Sci (Weinh). 2024; 11(32):e2403892.

PMID: 38922799 PMC: 11348103. DOI: 10.1002/advs.202403892.


References
1.
Behl M, Zhang Y, Shi Y, Cheng J, Du Y, Zheng W . Lead-induced accumulation of beta-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology. 2010; 31(5):524-32. PMC: 2934890. DOI: 10.1016/j.neuro.2010.05.004. View

2.
Rovelet-Lecrux A, Legallic S, Wallon D, Flaman J, Martinaud O, Bombois S . A genome-wide study reveals rare CNVs exclusive to extreme phenotypes of Alzheimer disease. Eur J Hum Genet. 2011; 20(6):613-7. PMC: 3355247. DOI: 10.1038/ejhg.2011.225. View

3.
Matsubara E, Frangione B, Ghiso J . Characterization of apolipoprotein J-Alzheimer's A beta interaction. J Biol Chem. 1995; 270(13):7563-7. DOI: 10.1074/jbc.270.13.7563. View

4.
Kim J, Basak J, Holtzman D . The role of apolipoprotein E in Alzheimer's disease. Neuron. 2009; 63(3):287-303. PMC: 3044446. DOI: 10.1016/j.neuron.2009.06.026. View

5.
Bell R, Sagare A, Friedman A, Bedi G, Holtzman D, Deane R . Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab. 2006; 27(5):909-18. PMC: 2853021. DOI: 10.1038/sj.jcbfm.9600419. View