» Articles » PMID: 22748079

The Effect of Ambient Humidity on the Electrical Properties of Graphene Oxide Films

Overview
Publisher Springer
Specialty Biotechnology
Date 2012 Jul 4
PMID 22748079
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

We investigate the effect of water adsorption on the electrical properties of graphene oxide (GO) films using the direct current (DC) measurement and alternating current (AC) complex impedance spectroscopy. GO suspension synthesized by a modified Hummer's method is deposited on Au interdigitated electrodes. The strong electrical interaction of water molecules with GO films was observed through electrical characterizations. The DC measurement results show that the electrical properties of GO films are humidity- and applied voltage amplitude-dependent. The AC complex impedance spectroscopy method is used to analyze the mechanism of electrical interaction between water molecules and GO films in detail. At low humidity, GO films exhibit poor conductivity and can be seen as an insulator. However, at high humidity, the conductivity of GO films increases due to the enhancement of ion conduction. Our systematic research on this effect provides the fundamental supports for the development of graphene devices originating from solution-processed graphene oxide.

Citing Articles

Graphene Oxide Nanoparticles and Organoids: A Prospective Advanced Model for Pancreatic Cancer Research.

Mai S, Inkielewicz-Stepniak I Int J Mol Sci. 2024; 25(2).

PMID: 38256139 PMC: 10817028. DOI: 10.3390/ijms25021066.


Reduced Graphene Oxide/Polyelectrolyte Multilayers for Fast Resistive Humidity Sensing.

Noh W, Go Y, An H Sensors (Basel). 2023; 23(4).

PMID: 36850575 PMC: 9965716. DOI: 10.3390/s23041977.


Low-Temperature Direct Growth of Amorphous Boron Nitride Films for High-Performance Nanoelectronic Device Applications.

Sattari-Esfahlan S, Kim H, Hyun S, Choi J, Hwang H, Kim E ACS Appl Mater Interfaces. 2023; 15(5):7274-7281.

PMID: 36719071 PMC: 9923684. DOI: 10.1021/acsami.2c18706.


Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene.

Singh S, Chatterjee S, Lone S, Ho H, Kaswan K, Peringeth K Mikrochim Acta. 2022; 189(6):236.

PMID: 35633385 PMC: 9146825. DOI: 10.1007/s00604-022-05317-2.


Ultra-Sensitive Photo-Induced Hydrogen Gas Sensor Based on Two-Dimensional CeO-Pd-PDA/rGO Heterojunction Nanocomposite.

Hashtroudi H, Yu A, Juodkazis S, Shafiei M Nanomaterials (Basel). 2022; 12(10).

PMID: 35630850 PMC: 9147198. DOI: 10.3390/nano12101628.


References
1.
Lee B, Yu H, Jeong G . Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application. Nanoscale Res Lett. 2010; 5(11):1768-1773. PMC: 2964468. DOI: 10.1007/s11671-010-9708-9. View

2.
Nair R, Wu H, Jayaram P, Grigorieva I, Geim A . Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science. 2012; 335(6067):442-4. DOI: 10.1126/science.1211694. View

3.
Medhekar N, Ramasubramaniam A, Ruoff R, Shenoy V . Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano. 2010; 4(4):2300-6. DOI: 10.1021/nn901934u. View

4.
Balapanuru J, Yang J, Xiao S, Bao Q, Jahan M, Polavarapu L . A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed Engl. 2010; 49(37):6549-53. DOI: 10.1002/anie.201001004. View

5.
Gilje S, Han S, Wang M, Wang K, Kaner R . A chemical route to graphene for device applications. Nano Lett. 2007; 7(11):3394-8. DOI: 10.1021/nl0717715. View