» Articles » PMID: 22742417

Molecular Dissection of TatC Defines Critical Regions Essential for Protein Transport and a TatB-TatC Contact Site

Overview
Journal Mol Microbiol
Date 2012 Jun 30
PMID 22742417
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. TatC is the largest and most conserved component of the Tat machinery. It forms a multisubunit complex with TatB and binds the signal peptides of Tat substrates. Here we have taken a random mutagenesis approach to identify substitutions in Escherichia coli TatC that inactivate protein transport. We identify 32 individual amino acid substitutions that abolish or severely compromise TatC activity. The majority of the inactivating substitutions fall within the first two periplasmic loops of TatC. These regions are predicted to have conserved secondary structure and results of extensive amino acid insertion and deletion mutagenesis are consistent with these conserved elements being essential for TatC function. Three inactivating substitutions were identified in the fifth transmembrane helix of TatC. The inactive M205R variant could be suppressed by mutations affecting amino acids in the transmembrane helix of TatB. A physical interaction between TatC helix 5 and the TatB transmembrane helix was confirmed by the formation of a site-specific disulphide bond between TatC M205C and TatB L9C variants. This is the first molecular contact site mapped to single amino acid level between these two proteins.

Citing Articles

Characterization of a TatA/TatB binding site on the TatC component of the twin arginine translocase.

Severi E, Bunoro Batista M, Lannoy A, Stansfeld P, Palmer T Microbiology (Reading). 2023; 169(2).

PMID: 36790402 PMC: 10197872. DOI: 10.1099/mic.0.001298.


Transport of Folded Proteins by the Tat System.

Frain K, Robinson C, van Dijl J Protein J. 2019; 38(4):377-388.

PMID: 31401776 PMC: 6708511. DOI: 10.1007/s10930-019-09859-y.


A Potential Late Stage Intermediate of Twin-Arginine Dependent Protein Translocation in .

Geise H, Heidrich E, Nikolin C, Mehner-Breitfeld D, Bruser T Front Microbiol. 2019; 10:1482.

PMID: 31354642 PMC: 6637791. DOI: 10.3389/fmicb.2019.01482.


Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in .

Frobel J, Blummel A, Drepper F, Warscheid B, Muller M J Biol Chem. 2019; 294(38):13902-13914.

PMID: 31341014 PMC: 6755809. DOI: 10.1074/jbc.RA119.009298.


Thylakoid-integrated recombinant Hcf106 participates in the chloroplast twin arginine transport system.

Ma Q, Fite K, New C, Dabney-Smith C Plant Direct. 2019; 2(10):e00090.

PMID: 31245690 PMC: 6508782. DOI: 10.1002/pld3.90.


References
1.
de Leeuw E, Granjon T, Porcelli I, Alami M, Carr S, Muller M . Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. J Mol Biol. 2002; 322(5):1135-46. DOI: 10.1016/s0022-2836(02)00820-3. View

2.
Jongbloed J, van der Ploeg R, van Dijl J . Bifunctional TatA subunits in minimal Tat protein translocases. Trends Microbiol. 2005; 14(1):2-4. DOI: 10.1016/j.tim.2005.11.001. View

3.
Driessen A, Nouwen N . Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem. 2007; 77:643-67. DOI: 10.1146/annurev.biochem.77.061606.160747. View

4.
Meruelo A, Samish I, Bowie J . TMKink: a method to predict transmembrane helix kinks. Protein Sci. 2011; 20(7):1256-64. PMC: 3149198. DOI: 10.1002/pro.653. View

5.
Cline K, Mori H . Thylakoid DeltapH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol. 2001; 154(4):719-29. PMC: 2196467. DOI: 10.1083/jcb.200105149. View