» Articles » PMID: 22729148

Metallo-β-lactamases Withstand Low Zn(II) Conditions by Tuning Metal-ligand Interactions

Overview
Journal Nat Chem Biol
Date 2012 Jun 26
PMID 22729148
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

A number of multiresistant bacterial pathogens inactivate antibiotics by producing Zn(II)-dependent β-lactamases. We show that metal uptake leading to an active dinuclear enzyme in the periplasmic space of Gram-negative bacteria is ensured by a cysteine residue, an unusual metal ligand in oxidizing environments. Kinetic, structural and affinity data show that such Zn(II)-cysteine interaction is an adaptive trait that tunes the metal binding affinity, thus enabling antibiotic resistance at restrictive Zn(II) concentrations.

Citing Articles

Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens.

Tu M, Carfrae L, Rachwalski K, French S, Catacutan D, Gordzevich R Nat Microbiol. 2025; 10(1):53-65.

PMID: 39747690 DOI: 10.1038/s41564-024-01883-8.


Biochemical properties and substrate specificity of GOB-38 in Elizabethkingia anophelis.

Liu R, Liu Y, Qiu J, Ren Q, Wei C, Pan D Sci Rep. 2025; 15(1):351.

PMID: 39747310 PMC: 11695579. DOI: 10.1038/s41598-024-82748-2.


Functional and structural analyses of IMP-27 metallo-β-lactamase: evolution of IMP-type enzymes to overcome Zn(II) deprivation.

Kato Y, Yamaguchi T, Nakagawa-Kamura H, Ishii Y, Shimizu-Ibuka A Microbiol Spectr. 2024; :e0039124.

PMID: 39508587 PMC: 11619291. DOI: 10.1128/spectrum.00391-24.


In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution.

Gonzalez L, Bahr G, Gonzalez M, Bonomo R, Vila A Nat Chem Biol. 2023; 19(9):1116-1126.

PMID: 37188957 PMC: 11534350. DOI: 10.1038/s41589-023-01319-0.


Metallo-β-lactamases and a tug-of-war for the available zinc at the host-pathogen interface.

Bahr G, Gonzalez L, Vila A Curr Opin Chem Biol. 2021; 66:102103.

PMID: 34864439 PMC: 8860843. DOI: 10.1016/j.cbpa.2021.102103.


References
1.
Hu Z, Periyannan G, Bennett B, Crowder M . Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1. J Am Chem Soc. 2008; 130(43):14207-16. PMC: 2678235. DOI: 10.1021/ja8035916. View

2.
Simona F, Magistrato A, Dal Peraro M, Cavalli A, Vila A, Carloni P . Common mechanistic features among metallo-beta-lactamases: a computational study of Aeromonas hydrophila CphA enzyme. J Biol Chem. 2009; 284(41):28164-28171. PMC: 2788867. DOI: 10.1074/jbc.M109.049502. View

3.
Badarau A, Page M . Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams. Biochemistry. 2006; 45(36):11012-20. DOI: 10.1021/bi0610146. View

4.
Tioni M, Llarrull L, Poeylaut-Palena A, Marti M, Saggu M, Periyannan G . Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase. J Am Chem Soc. 2008; 130(47):15852-63. PMC: 2645938. DOI: 10.1021/ja801169j. View

5.
Moran-Barrio J, Limansky A, Viale A . Secretion of GOB metallo-beta-lactamase in Escherichia coli depends strictly on the cooperation between the cytoplasmic DnaK chaperone system and the Sec machinery: completion of folding and Zn(II) ion acquisition occur in the bacterial periplasm. Antimicrob Agents Chemother. 2009; 53(7):2908-17. PMC: 2704670. DOI: 10.1128/AAC.01637-08. View