Tanabe T, Grosser M, Hahn L, Kumpel C, Hartenfels H, Vtulkin E
PLoS Biol. 2023; 21(6):e3002177.
PMID: 37368881
PMC: 10332631.
DOI: 10.1371/journal.pbio.3002177.
Avila-Roman J, Gomez-Villegas P, de Carvalho C, Vigara J, Motilva V, Leon R
Antioxidants (Basel). 2023; 12(5).
PMID: 37237946
PMC: 10215637.
DOI: 10.3390/antiox12051080.
McBride C, Miller E, Charkoudian L
Microb Genom. 2023; 9(3).
PMID: 36951894
PMC: 10132072.
DOI: 10.1099/mgen.0.000965.
Hopf F, Roth C, de Souza E, Galina L, Czeczot A, Machado P
Front Microbiol. 2022; 13:891610.
PMID: 35814645
PMC: 9260719.
DOI: 10.3389/fmicb.2022.891610.
Probst A, Elling F, Castelle C, Zhu Q, Elvert M, Birarda G
ISME J. 2020; 14(6):1547-1560.
PMID: 32203118
PMC: 7242380.
DOI: 10.1038/s41396-020-0624-4.
A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius.
Wang K, Sybers D, Ramadan Maklad H, Lemmens L, Lewyllie C, Zhou X
Nat Commun. 2019; 10(1):1542.
PMID: 30948713
PMC: 6449355.
DOI: 10.1038/s41467-019-09479-1.
The Various Roles of Fatty Acids.
de Carvalho C, Caramujo M
Molecules. 2018; 23(10).
PMID: 30304860
PMC: 6222795.
DOI: 10.3390/molecules23102583.
The Thaumarchaeon N. gargensis carries functional bioABD genes and has a promiscuous E. coli ΔbioH-complementing esterase EstN1.
Chow J, Danso D, Ferrer M, Streit W
Sci Rep. 2018; 8(1):13823.
PMID: 30218044
PMC: 6138646.
DOI: 10.1038/s41598-018-32059-0.
Archaea and the origin of eukaryotes.
Eme L, Spang A, Lombard J, Stairs C, Ettema T
Nat Rev Microbiol. 2017; 15(12):711-723.
PMID: 29123225
DOI: 10.1038/nrmicro.2017.133.
Early evolution of polyisoprenol biosynthesis and the origin of cell walls.
Lombard J
PeerJ. 2016; 4:e2626.
PMID: 27812422
PMC: 5088576.
DOI: 10.7717/peerj.2626.
Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR.
Hamerly T, Tripet B, Wurch L, Hettich R, Podar M, Bothner B
Archaea. 2016; 2015:472726.
PMID: 26880868
PMC: 4736080.
DOI: 10.1155/2015/472726.
Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea.
Charlesworth J, Burns B
Archaea. 2015; 2015:282035.
PMID: 26504428
PMC: 4609331.
DOI: 10.1155/2015/282035.
Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages.
Leon-Zayas R, Novotny M, Podell S, Shepard C, Berkenpas E, Nikolenko S
Appl Environ Microbiol. 2015; 81(24):8265-76.
PMID: 26386059
PMC: 4644660.
DOI: 10.1128/AEM.01659-15.
Bacterial gene import and mesophilic adaptation in archaea.
Lopez-Garcia P, Zivanovic Y, Deschamps P, Moreira D
Nat Rev Microbiol. 2015; 13(7):447-56.
PMID: 26075362
PMC: 4601535.
DOI: 10.1038/nrmicro3485.
Nontemplate-driven polymers: clues to a minimal form of organization closure at the early stages of living systems.
Freire M
Theory Biosci. 2015; 134(1-2):47-64.
PMID: 25916275
DOI: 10.1007/s12064-015-0209-3.
Using modern tools to probe the structure-function relationship of fatty acid synthases.
Finzel K, Lee D, Burkart M
Chembiochem. 2015; 16(4):528-547.
PMID: 25676190
PMC: 4545599.
DOI: 10.1002/cbic.201402578.
A statistical anomaly indicates symbiotic origins of eukaryotic membranes.
Bansal S, Mittal A
Mol Biol Cell. 2015; 26(7):1238-48.
PMID: 25631820
PMC: 4454172.
DOI: 10.1091/mbc.E14-06-1078.
Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.
Beld J, Lee D, Burkart M
Mol Biosyst. 2014; 11(1):38-59.
PMID: 25360565
PMC: 4276719.
DOI: 10.1039/c4mb00443d.
The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life.
Cavalier-Smith T
Cold Spring Harb Perspect Biol. 2014; 6(9):a016006.
PMID: 25183828
PMC: 4142966.
DOI: 10.1101/cshperspect.a016006.
Phylogenomic reconstruction of archaeal fatty acid metabolism.
Dibrova D, Galperin M, Mulkidjanian A
Environ Microbiol. 2014; 16(4):907-18.
PMID: 24818264
PMC: 4019937.
DOI: 10.1111/1462-2920.12359.