» Articles » PMID: 22711280

A Transcriptional Network Underlies Susceptibility to Kidney Disease Progression

Overview
Journal EMBO Mol Med
Specialty Molecular Biology
Date 2012 Jun 20
PMID 22711280
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The molecular networks that control the progression of chronic kidney diseases (CKD) are poorly defined. We have recently shown that the susceptibility to development of renal lesions after nephron reduction is controlled by a locus on mouse chromosome 6 and requires epidermal growth factor receptor (EGFR) activation. Here, we identified microphthalmia-associated transcription factor A (MITF-A), a bHLH-Zip transcription factor, as a modifier of CKD progression. Sequence analysis revealed a strain-specific mutation in the 5' UTR that decreases MITF-A protein synthesis in lesion-prone friend virus B NIH (FVB/N) mice. More importantly, we dissected the molecular pathway by which MITF-A modulates CKD progression. MITF-A interacts with histone deacetylases to repress the transcription of TGF-α, a ligand of EGFR, and antagonizes transactivation by its related partner, transcription factor E3 (TFE3). Consistent with the key role of this network in CKD, Tgfa gene inactivation protected FVB/N mice from renal deterioration after nephron reduction. These data are relevant to human CKD, as we found that the TFE3/MITF-A ratio was increased in patients with damaged kidneys. Our study uncovers a novel transcriptional network and unveils novel potential prognostic and therapeutic targets for preventing human CKD progression.

Citing Articles

Signaling pathways predisposing to chronic kidney disease progression.

Zaidan M, Burtin M, Zhang J, Blanc T, Barre P, Garbay S JCI Insight. 2020; 5(9).

PMID: 32376805 PMC: 7253021. DOI: 10.1172/jci.insight.126183.


MITF - A controls branching morphogenesis and nephron endowment.

Phelep A, Laouari D, Bharti K, Burtin M, Tammaccaro S, Garbay S PLoS Genet. 2017; 13(12):e1007093.

PMID: 29240767 PMC: 5746285. DOI: 10.1371/journal.pgen.1007093.


Spindle pole cohesion requires glycosylation-mediated localization of NuMA.

Magescas J, Sengmanivong L, Viau A, Mayeux A, Dang T, Burtin M Sci Rep. 2017; 7(1):1474.

PMID: 28469279 PMC: 5431095. DOI: 10.1038/s41598-017-01614-6.


ADAM17 substrate release in proximal tubule drives kidney fibrosis.

Kefaloyianni E, Muthu M, Kaeppler J, Sun X, Sabbisetti V, Chalaris A JCI Insight. 2016; 1(13).

PMID: 27642633 PMC: 5026414. DOI: 10.1172/jci.insight.87023.


Structural basis of selectivity and neutralizing activity of a TGFα/epiregulin specific antibody.

Boyles J, Atwell S, Druzina Z, Heuer J, Witcher D Protein Sci. 2016; 25(11):2028-2036.

PMID: 27543934 PMC: 5079263. DOI: 10.1002/pro.3023.


References
1.
Karnib H, Chua S, Gharavi A . Genes for diabetic nephropathy: sweet prospects on the horizon. Kidney Int. 2007; 71(2):94-6. DOI: 10.1038/sj.ki.5002022. View

2.
Steingrimsson E, Copeland N, Jenkins N . Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004; 38:365-411. DOI: 10.1146/annurev.genet.38.072902.092717. View

3.
Gharavi A, Ahmad T, Wong R, Hooshyar R, Vaughn J, Oller S . Mapping a locus for susceptibility to HIV-1-associated nephropathy to mouse chromosome 3. Proc Natl Acad Sci U S A. 2004; 101(8):2488-93. PMC: 356977. DOI: 10.1073/pnas.0308649100. View

4.
Racusen L, Solez K, Colvin R, Bonsib S, Castro M, CAVALLO T . The Banff 97 working classification of renal allograft pathology. Kidney Int. 1999; 55(2):713-23. DOI: 10.1046/j.1523-1755.1999.00299.x. View

5.
Pillebout E, Burtin M, Yuan H, Briand P, Woolf A, Friedlander G . Proliferation and remodeling of the peritubular microcirculation after nephron reduction: association with the progression of renal lesions. Am J Pathol. 2001; 159(2):547-60. PMC: 1850535. DOI: 10.1016/S0002-9440(10)61726-9. View