» Articles » PMID: 22677380

The Influenza Fusion Peptide Adopts a Flexible Flat V Conformation in Membranes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2012 Jun 9
PMID 22677380
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Knowledge about the influenza fusion peptide (FP) membrane insertion mode is crucial for understanding its fusogenic mechanism. NMR and electron paramagnetic resonance experiments showed that in micelles, the FP inserted as a fixed-angle inverted V. In membranes, however, it was shown to insert as a straight α-helix (by molecular-dynamics simulations) and to adopt multiple kinked conformations (by solid-state NMR). In this work we performed explicit-solvent molecular-dynamics simulations of the influenza FP, and its F9A and W14A mutants, in POPC membranes. The Hα1 chemical shifts predicted from the molecular-dynamics structures are in excellent agreement with the experimental values obtained for the three peptides. The peptide orientation and conformations observed from the simulations lead to a flexible flat-V model in which the peptide lies almost flat on the membrane surface and alternates between kinked and straight-helix conformations.

Citing Articles

Viral entry mechanisms: the role of molecular simulation in unlocking a key step in viral infections.

Valerio M, Buga C, Melo M, Soares C, Lousa D FEBS Open Bio. 2024; 15(2):269-284.

PMID: 39402013 PMC: 11788750. DOI: 10.1002/2211-5463.13908.


Parainfluenza Fusion Peptide Promotes Membrane Fusion by Assembling into Oligomeric Porelike Structures.

Valerio M, Mendonca D, Morais J, Buga C, Cruz C, Castanho M ACS Chem Biol. 2022; 17(7):1831-1843.

PMID: 35500279 PMC: 9295702. DOI: 10.1021/acschembio.2c00208.


Molecular mechanisms of the influenza fusion peptide: insights from experimental and simulation studies.

Lousa D, Soares C FEBS Open Bio. 2021; 11(12):3253-3261.

PMID: 34710289 PMC: 8634857. DOI: 10.1002/2211-5463.13323.


All-atom virus simulations.

Hadden J, Perilla J Curr Opin Virol. 2018; 31:82-91.

PMID: 30181049 PMC: 6456034. DOI: 10.1016/j.coviro.2018.08.007.


Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide.

Lousa D, Pinto A, Victor B, Laio A, Veiga A, Castanho M Sci Rep. 2016; 6:28099.

PMID: 27302370 PMC: 4908596. DOI: 10.1038/srep28099.


References
1.
Jang H, Michaud-Agrawal N, Johnston J, Woolf T . How to lose a kink and gain a helix: pH independent conformational changes of the fusion domains from influenza hemagglutinin in heterogeneous lipid bilayers. Proteins. 2008; 72(1):299-312. DOI: 10.1002/prot.21925. View

2.
MacKerell Jr A, Feig M, Brooks 3rd C . Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem. 2004; 25(11):1400-15. DOI: 10.1002/jcc.20065. View

3.
Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E . Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16):1781-802. PMC: 2486339. DOI: 10.1002/jcc.20289. View

4.
Luneberg J, Martin I, Nussler F, Ruysschaert J, Herrmann A . Structure and topology of the influenza virus fusion peptide in lipid bilayers. J Biol Chem. 1995; 270(46):27606-14. DOI: 10.1074/jbc.270.46.27606. View

5.
Macosko J, Kim C, Shin Y . The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J Mol Biol. 1997; 267(5):1139-48. DOI: 10.1006/jmbi.1997.0931. View