Merchant G, Al-Salim S, Tempero R, Fitzpatrick D, Neely S
Ear Hear. 2021; 42(5):1183-1194.
PMID: 33928915
PMC: 8387322.
DOI: 10.1097/AUD.0000000000001037.
Merchant G, Siegel J, Neely S, Rosowski J, Nakajima H
J Assoc Res Otolaryngol. 2019; 20(6):529-552.
PMID: 31673928
PMC: 6889121.
DOI: 10.1007/s10162-019-00735-1.
Charaziak K, Shera C
J Acoust Soc Am. 2017; 141(1):515.
PMID: 28147590
PMC: 5848844.
DOI: 10.1121/1.4973618.
Merchant G, Merchant S, Rosowski J, Nakajima H
Hear Res. 2016; 341:19-30.
PMID: 27496538
PMC: 6042870.
DOI: 10.1016/j.heares.2016.07.018.
Keefe D, Hunter L, Feeney M, Fitzpatrick D
J Acoust Soc Am. 2016; 138(6):3625-53.
PMID: 26723319
PMC: 4684573.
DOI: 10.1121/1.4936946.
Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
Keefe D
J Acoust Soc Am. 2015; 137(5):2698-725.
PMID: 25994701
PMC: 4570511.
DOI: 10.1121/1.4916592.
Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
Ravicz M, Cheng J, Rosowski J
J Acoust Soc Am. 2014; 136(6):3132.
PMID: 25480061
PMC: 4257973.
DOI: 10.1121/1.4898420.
Comparison of nine methods to estimate ear-canal stimulus levels.
Souza N, Dhar S, Neely S, Siegel J
J Acoust Soc Am. 2014; 136(4):1768-87.
PMID: 25324079
PMC: 4223983.
DOI: 10.1121/1.4894787.
An analysis of the acoustic input impedance of the ear.
Withnell R, Gowdy L
J Assoc Res Otolaryngol. 2013; 14(5):611-22.
PMID: 23917695
PMC: 3767877.
DOI: 10.1007/s10162-013-0407-y.
An overview of wideband immittance measurements techniques and terminology: you say absorbance, I say reflectance.
Rosowski J, Stenfelt S, Lilly D
Ear Hear. 2013; 34 Suppl 1:9S-16S.
PMID: 23900187
PMC: 3800001.
DOI: 10.1097/AUD.0b013e31829d5a14.
Factors that introduce intrasubject variability into ear-canal absorbance measurements.
Voss S, Stenfelt S, Neely S, Rosowski J
Ear Hear. 2013; 34 Suppl 1:60S-64S.
PMID: 23900183
PMC: 3776579.
DOI: 10.1097/AUD.0b013e31829cfd64.
Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis.
Cheng J, Hamade M, Merchant S, Rosowski J, Harrington E, Furlong C
J Acoust Soc Am. 2013; 133(2):918-37.
PMID: 23363110
PMC: 3574078.
DOI: 10.1121/1.4773263.
Chinchilla middle-ear admittance and sound power: high-frequency estimates and effects of inner-ear modifications.
Ravicz M, Rosowski J
J Acoust Soc Am. 2012; 132(4):2437-54.
PMID: 23039439
PMC: 3477186.
DOI: 10.1121/1.4750487.
Inverse solution of ear-canal area function from reflectance.
Rasetshwane D, Neely S
J Acoust Soc Am. 2012; 130(6):3873-81.
PMID: 22225043
PMC: 3253594.
DOI: 10.1121/1.3654019.
Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals.
Voss S, Merchant G, Horton N
Ear Hear. 2011; 33(2):195-208.
PMID: 22037477
PMC: 3718455.
DOI: 10.1097/AUD.0b013e31823235b5.
Specification of absorbed-sound power in the ear canal: application to suppression of stimulus frequency otoacoustic emissions.
Keefe D, Schairer K
J Acoust Soc Am. 2011; 129(2):779-91.
PMID: 21361437
PMC: 3070993.
DOI: 10.1121/1.3531796.
Sound-conduction effects on distortion-product otoacoustic emission screening outcomes in newborn infants: test performance of wideband acoustic transfer functions and 1-kHz tympanometry.
Sanford C, Keefe D, Liu Y, Fitzpatrick D, McCreery R, Lewis D
Ear Hear. 2009; 30(6):635-52.
PMID: 19701089
PMC: 3519360.
DOI: 10.1097/AUD.0b013e3181b61cdc.
Wideband absorbance tympanometry using pressure sweeps: system development and results on adults with normal hearing.
Liu Y, Sanford C, Ellison J, Fitzpatrick D, Gorga M, Keefe D
J Acoust Soc Am. 2009; 124(6):3708-19.
PMID: 19206798
PMC: 2737248.
DOI: 10.1121/1.3001712.
Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
Ravicz M, Olson E, Rosowski J
J Acoust Soc Am. 2007; 122(4):2154-73.
PMID: 17902852
PMC: 2302835.
DOI: 10.1121/1.2769625.