» Articles » PMID: 22612805

The Extracellular Space and Epileptic Activity in the Adult Brain: Explaining the Antiepileptic Effects of Furosemide and Bumetanide

Overview
Journal Epilepsia
Specialty Neurology
Date 2012 May 23
PMID 22612805
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Treatments that modulate the size of the extracellular space (ECS) also block epileptiform activity in adult brain tissue. This includes the loop diuretics furosemide and bumetanide, and alterations of the osmolarity of the ECS. These treatments block epileptiform activity in a variety of laboratory adult seizure models regardless of the underlying synaptic and physiologic mechanisms generating the seizure activity. Optical imaging studies on adult hippocampal slices show that the blockade of epileptiform activity by these treatments is concomitant with their blockade of activity-driven changes of the ECS. Here we develop and analyze the hypothesis that activity-driven changes in the size of the ECS are necessary for the maintenance of hypersynchronous epileptiform activity. In support of this hypothesis is an accumulation of data from a number of studies suggesting that furosemide and bumetanide mediate antiepileptic effects through their blockade of cell swelling, dependent on their antagonism of the glial Na+-K-2Cl cotransporter (NKCC1).

Citing Articles

Revolutionising Neurological Therapeutics: Investigating Drug Repurposing Strategies.

Attri M, Raghav A, Sinha J CNS Neurol Disord Drug Targets. 2024; 24(2):115-131.

PMID: 39323347 DOI: 10.2174/0118715273329531240911075309.


Rapid volume pulsation of the extracellular space coincides with epileptiform activity in mice and depends on the NBCe1 transporter.

Colbourn R, Hrabe J, Nicholson C, Perkins M, Goodman J, Hrabetova S J Physiol. 2021; 599(12):3195-3220.

PMID: 33942325 PMC: 9319884. DOI: 10.1113/JP281544.


What Triggers the Interictal Epileptic Spike? A Multimodal Multiscale Analysis of the Dynamic of Synaptic and Non-synaptic Neuronal and Vascular Compartments Using Electrical and Optical Measurements.

Arnal-Real C, Mahmoudzadeh M, Manoochehri M, Nourhashemi M, Wallois F Front Neurol. 2021; 12:596926.

PMID: 33643187 PMC: 7907164. DOI: 10.3389/fneur.2021.596926.


Discovery of a Small Molecule Drug Candidate for Selective NKCC1 Inhibition in Brain Disorders.

Savardi A, Borgogno M, Narducci R, La Sala G, Ortega J, Summa M Chem. 2020; 6(8):2073-2096.

PMID: 32818158 PMC: 7427514. DOI: 10.1016/j.chempr.2020.06.017.


ECS Dynamism and Its Influence on Neuronal Excitability and Seizures.

Colbourn R, Naik A, Hrabetova S Neurochem Res. 2019; 44(5):1020-1036.

PMID: 30879174 DOI: 10.1007/s11064-019-02773-w.


References
1.
Blaesse P, Airaksinen M, Rivera C, Kaila K . Cation-chloride cotransporters and neuronal function. Neuron. 2009; 61(6):820-38. DOI: 10.1016/j.neuron.2009.03.003. View

2.
Schwartzkroin P, Baraban S, Hochman D . Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res. 1998; 32(1-2):275-85. DOI: 10.1016/s0920-1211(98)00058-8. View

3.
Thompson S, Deisz R, Prince D . Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. J Neurophysiol. 1988; 60(1):105-24. DOI: 10.1152/jn.1988.60.1.105. View

4.
Ransom B, Yamate C, Connors B . Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J Neurosci. 1985; 5(2):532-5. PMC: 6565184. View

5.
Hochman D, Baraban S, Owens J, Schwartzkroin P . Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science. 1995; 270(5233):99-102. DOI: 10.1126/science.270.5233.99. View