» Articles » PMID: 22607732

Modeling of Human Factor Va Inactivation by Activated Protein C

Overview
Journal BMC Syst Biol
Publisher Biomed Central
Specialty Biology
Date 2012 May 22
PMID 22607732
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Because understanding of the inventory, connectivity and dynamics of the components characterizing the process of coagulation is relatively mature, it has become an attractive target for physiochemical modeling. Such models can potentially improve the design of therapeutics. The prothrombinase complex (composed of the protease factor (F)Xa and its cofactor FVa) plays a central role in this network as the main producer of thrombin, which catalyses both the activation of platelets and the conversion of fibrinogen to fibrin, the main substances of a clot. A key negative feedback loop that prevents clot propagation beyond the site of injury is the thrombin-dependent generation of activated protein C (APC), an enzyme that inactivates FVa, thus neutralizing the prothrombinase complex. APC inactivation of FVa is complex, involving the production of partially active intermediates and "protection" of FVa from APC by both FXa and prothrombin. An empirically validated mathematical model of this process would be useful in advancing the predictive capacity of comprehensive models of coagulation.

Results: A model of human APC inactivation of prothrombinase was constructed in a stepwise fashion by analyzing time courses of FVa inactivation in empirical reaction systems with increasing number of interacting components and generating corresponding model constructs of each reaction system. Reaction mechanisms, rate constants and equilibrium constants informing these model constructs were initially derived from various research groups reporting on APC inactivation of FVa in isolation, or in the presence of FXa or prothrombin. Model predictions were assessed against empirical data measuring the appearance and disappearance of multiple FVa degradation intermediates as well as prothrombinase activity changes, with plasma proteins derived from multiple preparations. Our work integrates previously published findings and through the cooperative analysis of in vitro experiments and mathematical constructs we are able to produce a final validated model that includes 24 chemical reactions and interactions with 14 unique rate constants which describe the flux in concentrations of 24 species.

Conclusion: This study highlights the complexity of the inactivation process and provides a module of equations describing the Protein C pathway that can be integrated into existing comprehensive mathematical models describing tissue factor initiated coagulation.

Citing Articles

Changes in Coagulation and Fibrinolytic Factors in Patients With Cirrhotic Refractory Ascites Undergoing Cell-free and Concentrated Ascites Reinfusion Therapy: A Retrospective Observational Study in Japan.

Yorioka N, Namisaki T, Shibamoto A, Suzuki J, Kubo T, Iwai S In Vivo. 2023; 37(3):1226-1235.

PMID: 37103093 PMC: 10188040. DOI: 10.21873/invivo.13199.


A Review of Quantitative Systems Pharmacology Models of the Coagulation Cascade: Opportunities for Improved Usability.

Chung D, Bakshi S, van der Graaf P Pharmaceutics. 2023; 15(3).

PMID: 36986779 PMC: 10054658. DOI: 10.3390/pharmaceutics15030918.


Mathematical model of thrombin generation and bleeding phenotype in Amish carriers of Factor IX:C deficiency vs. controls.

Gupta S, Bravo M, Heiman M, Nakar C, Brummel-Ziedins K, Miller C Thromb Res. 2019; 182:43-50.

PMID: 31446339 PMC: 7071813. DOI: 10.1016/j.thromres.2019.07.020.


Comparative response of platelet fV and plasma fV to activated protein C and relevance to a model of acute traumatic coagulopathy.

Campbell J, Meledeo M, Cap A PLoS One. 2014; 9(6):e99181.

PMID: 24921658 PMC: 4055642. DOI: 10.1371/journal.pone.0099181.


Modeling thrombin generation: plasma composition based approach.

Brummel-Ziedins K, Everse S, Mann K, Orfeo T J Thromb Thrombolysis. 2013; 37(1):32-44.

PMID: 24214371 DOI: 10.1007/s11239-013-1006-9.


References
1.
Rosing J, Hoekema L, Nicolaes G, Thomassen M, Hemker H, Varadi K . Effects of protein S and factor Xa on peptide bond cleavages during inactivation of factor Va and factor VaR506Q by activated protein C. J Biol Chem. 1995; 270(46):27852-8. DOI: 10.1074/jbc.270.46.27852. View

2.
Kuharsky A, Fogelson A . Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys J. 2001; 80(3):1050-74. PMC: 1301304. DOI: 10.1016/S0006-3495(01)76085-7. View

3.
Castoldi E, Hackeng T . Regulation of coagulation by protein S. Curr Opin Hematol. 2008; 15(5):529-36. DOI: 10.1097/MOH.0b013e328309ec97. View

4.
Barhoover M, Kalafatis M . Cleavage at both Arg306 and Arg506 is required and sufficient for timely and efficient inactivation of factor Va by activated protein C. Blood Coagul Fibrinolysis. 2011; 22(4):317-24. PMC: 3089681. DOI: 10.1097/MBC.0b013e3283456c4e. View

5.
Nesheim M, Taswell J, Mann K . The contribution of bovine Factor V and Factor Va to the activity of prothrombinase. J Biol Chem. 1979; 254(21):10952-62. View