» Articles » PMID: 22605481

Exosome-mediated Transfer of MiR-133b from Multipotent Mesenchymal Stromal Cells to Neural Cells Contributes to Neurite Outgrowth

Overview
Journal Stem Cells
Date 2012 May 19
PMID 22605481
Citations 471
Authors
Affiliations
Soon will be listed here.
Abstract

Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes.

Citing Articles

Global requirements for manufacturing and validation of clinical grade extracellular vesicles.

Thakur A, Rai D J Liq Biopsy. 2025; 6:100278.

PMID: 40027307 PMC: 11863704. DOI: 10.1016/j.jlb.2024.100278.


Small Extracellular Vesicles Promote Axon Outgrowth by Engaging the Wnt-Planar Cell Polarity Pathway.

Ahmad S, Christova T, Pye M, Narimatsu M, Song S, Wrana J Cells. 2025; 14(1.

PMID: 39791757 PMC: 11720052. DOI: 10.3390/cells14010056.


Disorders: Basics of Biology and Therapeutics in Development.

Gillett D, Tigro H, Wang Y, Suo Z Cells. 2025; 13(24.

PMID: 39768191 PMC: 11674747. DOI: 10.3390/cells13242100.


Plant-Derived Exosome-like Nanoparticles: A Comprehensive Overview of Their Composition, Biogenesis, Isolation, and Biological Applications.

Sha A, Luo Y, Xiao W, He J, Chen X, Xiong Z Int J Mol Sci. 2024; 25(22).

PMID: 39596159 PMC: 11593521. DOI: 10.3390/ijms252212092.


Unveiling the promise: Exosomes as game-changers in anti-infective therapy.

Chavda V, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G Exploration (Beijing). 2024; 4(5):20230139.

PMID: 39439498 PMC: 11491308. DOI: 10.1002/EXP.20230139.


References
1.
Akcakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata D, Xie H . miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011; 39(2):311-8. DOI: 10.3892/ijo.2011.1043. View

2.
Iguchi H, Kosaka N, Ochiya T . Secretory microRNAs as a versatile communication tool. Commun Integr Biol. 2010; 3(5):478-81. PMC: 2974086. DOI: 10.4161/cib.3.5.12693. View

3.
Mahmood A, Lu D, Yi L, Chen J, Chopp M . Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg. 2001; 94(4):589-95. DOI: 10.3171/jns.2001.94.4.0589. View

4.
Chen X, Katakowski M, Li Y, Lu D, Wang L, Zhang L . Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res. 2002; 69(5):687-91. DOI: 10.1002/jnr.10334. View

5.
Sanchez-Simon F, Zhang X, Loh H, Law P, Rodriguez R . Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol. 2010; 78(5):935-42. PMC: 2981367. DOI: 10.1124/mol.110.066837. View