» Articles » PMID: 22595786

The Origin of Extracellular Fields and Currents--EEG, ECoG, LFP and Spikes

Overview
Specialty Neurology
Date 2012 May 19
PMID 22595786
Citations 1618
Authors
Affiliations
Soon will be listed here.
Abstract

Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources--including Na(+) and Ca(2+) spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations--can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

Citing Articles

SeizyML: An Application for Semi-Automated Seizure Detection Using Interpretable Machine Learning Models.

Antonoudiou P, Basu T, Maguire J Neuroinformatics. 2025; 23(2):23.

PMID: 40032704 PMC: 11876212. DOI: 10.1007/s12021-025-09719-4.


Deep learning models using intracranial and scalp EEG for predicting sedation level during emergence from anaesthesia.

Han L, Purger D, Eagleman S, Halpern C, Buch V, Gaston S BJA Open. 2025; 12:100347.

PMID: 40018289 PMC: 11867133. DOI: 10.1016/j.bjao.2024.100347.


Functional segregation of rostral and caudal hippocampus in associative memory.

Vorobiova A, Feurra M, Pavone E, Stieglitz L, Imbach L, Moiseeva V Front Hum Neurosci. 2025; 19:1509163.

PMID: 39996022 PMC: 11848949. DOI: 10.3389/fnhum.2025.1509163.


Transparent, flexible graphene-ITO-based neural microelectrodes for simultaneous electrophysiology recording and calcium imaging of intracortical neural activity in freely moving mice.

Yuan M, Li F, Xue F, Wang Y, Li B, Tang R Microsyst Nanoeng. 2025; 11(1):32.

PMID: 39994180 PMC: 11850855. DOI: 10.1038/s41378-025-00873-y.


Velocities of hippocampal traveling waves are proportional to their coherence frequency.

Goelman G, Benoliel T, Israel Z, Heymann S, Leon J, Ekstein D PLoS One. 2025; 20(2):e0313900.

PMID: 39982932 PMC: 11844891. DOI: 10.1371/journal.pone.0313900.


References
1.
Graybiel A . Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008; 31:359-87. DOI: 10.1146/annurev.neuro.29.051605.112851. View

2.
CREUTZFELDT O, Watanabe S, Lux H . Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. Electroencephalogr Clin Neurophysiol. 1966; 20(1):1-18. DOI: 10.1016/0013-4694(66)90136-2. View

3.
Castro-Alamancos M, Connors B . Short-term plasticity of a thalamocortical pathway dynamically modulated by behavioral state. Science. 1996; 272(5259):274-7. DOI: 10.1126/science.272.5259.274. View

4.
Vanhatalo S, Palva J, Holmes M, Miller J, Voipio J, Kaila K . Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc Natl Acad Sci U S A. 2004; 101(14):5053-7. PMC: 387372. DOI: 10.1073/pnas.0305375101. View

5.
Ozen S, Sirota A, Belluscio M, Anastassiou C, Stark E, Koch C . Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010; 30(34):11476-85. PMC: 2937280. DOI: 10.1523/JNEUROSCI.5252-09.2010. View