» Articles » PMID: 22593736

Effect of Temperature on Spiking Patterns of Neocortical Layer 2/3 and Layer 6 Pyramidal Neurons

Overview
Date 2012 May 18
PMID 22593736
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The spiking patterns of neocortical pyramidal neurons are shaped by the conductances in their apical dendrites. We have previously shown that the spiking patterns of layer 5 pyramidal neurons change with temperature, probably because temperature modulates the electrical coupling between somatic and dendritic compartments. Here we determine whether temperature has similar effects on the spiking patterns of layer 2/3 and layer 6 pyramidal neurons in acute slices of mouse primary motor cortex. In both cell types, decreasing temperature led to more irregular spiking patterns. Our results indicate that a decrease in spiking regularity with decreasing temperature, probably mediated by increased electrical coupling between soma and dendrites, is common to all pyramidal neurons in motor cortex.

Citing Articles

Thermal effects and ephaptic entrainment in Hodgkin-Huxley model.

Brasil de Sousa M, Moreno Cunha G, Corso G, Dos Santos Lima G Sci Rep. 2024; 14(1):20075.

PMID: 39209942 PMC: 11362309. DOI: 10.1038/s41598-024-70655-5.


Widefield imaging of rapid pan-cortical voltage dynamics with an indicator evolved for one-photon microscopy.

Lu X, Wang Y, Liu Z, Gou Y, Jaeger D, St-Pierre F Nat Commun. 2023; 14(1):6423.

PMID: 37828037 PMC: 10570354. DOI: 10.1038/s41467-023-41975-3.


magnetic recording of single-neuron action potentials Abbreviated title: In vivo magnetic single-neuron action potentials.

Klein F, Jendritza P, Chopin C, Parto-Dezfouli M, Solignac A, Fermon C bioRxiv. 2023; .

PMID: 37425851 PMC: 10327056. DOI: 10.1101/2023.06.30.547194.


Two firing modes and well-resolved Na, K, and Ca currents at the cell-microelectrode junction of spontaneously active rat chromaffin cell on MEAs.

Marcantoni A, Chiantia G, Tomagra G, Hidisoglu E, Franchino C, Carabelli V Pflugers Arch. 2022; 475(2):181-202.

PMID: 36260174 PMC: 9849155. DOI: 10.1007/s00424-022-02761-0.


Neurovascular coupling: motive unknown.

Drew P Trends Neurosci. 2022; 45(11):809-819.

PMID: 35995628 PMC: 9768528. DOI: 10.1016/j.tins.2022.08.004.


References
1.
Schwindt P, Crill W . Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. J Neurophysiol. 1999; 81(3):1341-54. DOI: 10.1152/jn.1999.81.3.1341. View

2.
Lee J, Callaway J, Foehring R . Effects of temperature on calcium transients and Ca2+-dependent afterhyperpolarizations in neocortical pyramidal neurons. J Neurophysiol. 2004; 93(4):2012-20. DOI: 10.1152/jn.01017.2004. View

3.
Cho R, Segawa S, Mizuno A, Kaneko T . Intracellularly labeled pyramidal neurons in the cortical areas projecting to the spinal cord. I. Electrophysiological properties of pyramidal neurons. Neurosci Res. 2004; 50(4):381-94. DOI: 10.1016/j.neures.2004.08.006. View

4.
Hedrick T, Waters J . Spiking patterns of neocortical L5 pyramidal neurons in vitro change with temperature. Front Cell Neurosci. 2011; 5:1. PMC: 3031023. DOI: 10.3389/fncel.2011.00001. View

5.
Degenetais E, Thierry A, Glowinski J, Gioanni Y . Electrophysiological properties of pyramidal neurons in the rat prefrontal cortex: an in vivo intracellular recording study. Cereb Cortex. 2001; 12(1):1-16. DOI: 10.1093/cercor/12.1.1. View