» Articles » PMID: 22581264

Proteomics and Systems Biology for Understanding Diabetic Nephropathy

Overview
Publisher Springer
Date 2012 May 15
PMID 22581264
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Like many diseases, diabetic nephropathy is defined in a histopathological context and studied using reductionist approaches that attempt to ameliorate structural changes. Novel technologies in mass spectrometry-based proteomics have the ability to provide a deeper understanding of the disease beyond classical histopathology, redefine the characteristics of the disease state, and identify novel approaches to reduce renal failure. The goal is to translate these new definitions into improved patient outcomes through diagnostic, prognostic, and therapeutic tools. Here, we review progress made in studying the proteomics of diabetic nephropathy and provide an introduction to the informatics tools used in the analysis of systems biology data, while pointing out statistical issues for consideration. Novel bioinformatics methods may increase biomarker identification, and other tools, including selective reaction monitoring, may hasten clinical validation.

Citing Articles

Integrative Biology of Diabetic Kidney Disease.

Harder J, Hodgin J, Kretzler M Kidney Dis (Basel). 2016; 1(3):194-203.

PMID: 26929927 PMC: 4768943. DOI: 10.1159/000439196.


MOPED 2.5--an integrated multi-omics resource: multi-omics profiling expression database now includes transcriptomics data.

Montague E, Stanberry L, Higdon R, Janko I, Lee E, Anderson N OMICS. 2014; 18(6):335-43.

PMID: 24910945 PMC: 4048574. DOI: 10.1089/omi.2014.0061.


MOPED enables discoveries through consistently processed proteomics data.

Higdon R, Stewart E, Stanberry L, Haynes W, Choiniere J, Montague E J Proteome Res. 2013; 13(1):107-13.

PMID: 24350770 PMC: 4039175. DOI: 10.1021/pr400884c.


The primary glomerulonephritides: a systems biology approach.

Jiang S, Chuang P, Liu Z, He J Nat Rev Nephrol. 2013; 9(9):500-12.

PMID: 23856995 PMC: 4222245. DOI: 10.1038/nrneph.2013.129.


Diabetic complications: current challenges and opportunities.

Nickerson H, Dutta S J Cardiovasc Transl Res. 2012; 5(4):375-9.

PMID: 22752737 PMC: 3396342. DOI: 10.1007/s12265-012-9388-1.

References
1.
Yoshida Y, Miyazaki K, Kamiie J, Sato M, Okuizumi S, Kenmochi A . Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database. Proteomics. 2005; 5(4):1083-96. DOI: 10.1002/pmic.200401075. View

2.
Merchant M, Perkins B, Boratyn G, Ficociello L, Wilkey D, Barati M . Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol. 2009; 20(9):2065-74. PMC: 2736765. DOI: 10.1681/ASN.2008121233. View

3.
He J, Chuang P, Maayan A, Iyengar R . Systems biology of kidney diseases. Kidney Int. 2011; 81(1):22-39. PMC: 3240740. DOI: 10.1038/ki.2011.314. View

4.
Overgaard A, Thingholm T, Larsen M, Tarnow L, Rossing P, McGuire J . Quantitative iTRAQ-Based Proteomic Identification of Candidate Biomarkers for Diabetic Nephropathy in Plasma of Type 1 Diabetic Patients. Clin Proteomics. 2010; 6(4):105-114. PMC: 2970822. DOI: 10.1007/s12014-010-9053-0. View

5.
Papale M, Di Paolo S, Magistroni R, Lamacchia O, Di Palma A, De Mattia A . Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care. 2010; 33(11):2409-15. PMC: 2963504. DOI: 10.2337/dc10-0345. View