» Articles » PMID: 22559943

Evolution of Human-specific Neural SRGAP2 Genes by Incomplete Segmental Duplication

Abstract

Gene duplication is an important source of phenotypic change and adaptive evolution. We leverage a haploid hydatidiform mole to identify highly identical sequences missing from the reference genome, confirming that the cortical development gene Slit-Robo Rho GTPase-activating protein 2 (SRGAP2) duplicated three times exclusively in humans. We show that the promoter and first nine exons of SRGAP2 duplicated from 1q32.1 (SRGAP2A) to 1q21.1 (SRGAP2B) ∼3.4 million years ago (mya). Two larger duplications later copied SRGAP2B to chromosome 1p12 (SRGAP2C) and to proximal 1q21.1 (SRGAP2D) ∼2.4 and ∼1 mya, respectively. Sequence and expression analyses show that SRGAP2C is the most likely duplicate to encode a functional protein and is among the most fixed human-specific duplicate genes. Our data suggest a mechanism where incomplete duplication created a novel gene function-antagonizing parental SRGAP2 function-immediately "at birth" 2-3 mya, which is a time corresponding to the transition from Australopithecus to Homo and the beginning of neocortex expansion.

Citing Articles

Structural variation, selection, and diversification of the gene family from the human pangenome.

Dishuck P, Munson K, Lewis A, Dougherty M, Underwood J, Harvey W bioRxiv. 2025; .

PMID: 39975192 PMC: 11838601. DOI: 10.1101/2025.02.04.636496.


Structural polymorphism and diversity of human segmental duplications.

Jeong H, Dishuck P, Yoo D, Harvey W, Munson K, Lewis A Nat Genet. 2025; 57(2):390-401.

PMID: 39779957 PMC: 11821543. DOI: 10.1038/s41588-024-02051-8.


The De Novo Emergence of Two Brain Genes in the Human Lineage Appears to be Unsupported.

Hannon Bozorgmehr J J Mol Evol. 2024; 93(1):3-10.

PMID: 39725692 DOI: 10.1007/s00239-024-10227-3.


Cis-Regulatory Evolution of CCNB1IP1 Driving Gradual Increase of Cortical Size and Folding in primates.

Hu T, Kong Y, Tan Y, Ma P, Wang J, Sun X bioRxiv. 2024; .

PMID: 39713381 PMC: 11661109. DOI: 10.1101/2024.12.08.627376.


Modelling human brain development and disease with organoids.

Birtele M, Lancaster M, Quadrato G Nat Rev Mol Cell Biol. 2024; .

PMID: 39668188 DOI: 10.1038/s41580-024-00804-1.


References
1.
Stedman H, Kozyak B, Nelson A, Thesier D, Su L, Low D . Myosin gene mutation correlates with anatomical changes in the human lineage. Nature. 2004; 428(6981):415-8. DOI: 10.1038/nature02358. View

2.
Antonacci F, Kidd J, Marques-Bonet T, Teague B, Ventura M, Girirajan S . A large and complex structural polymorphism at 16p12.1 underlies microdeletion disease risk. Nat Genet. 2010; 42(9):745-50. PMC: 2930074. DOI: 10.1038/ng.643. View

3.
Kidd J, Cooper G, Donahue W, Hayden H, Sampas N, Graves T . Mapping and sequencing of structural variation from eight human genomes. Nature. 2008; 453(7191):56-64. PMC: 2424287. DOI: 10.1038/nature06862. View

4.
Reich D, Green R, Kircher M, Krause J, Patterson N, Durand E . Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010; 468(7327):1053-60. PMC: 4306417. DOI: 10.1038/nature09710. View

5.
Thompson J, Gibson T, Higgins D . Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2008; Chapter 2:Unit 2.3. DOI: 10.1002/0471250953.bi0203s00. View