Weng Z, Wallis R, Wingfield B, Evans P, Baginski P, Kainth J
ACS Appl Electron Mater. 2024; 6(10):7276-7285.
PMID: 39464195
PMC: 11500406.
DOI: 10.1021/acsaelm.4c01208.
Jankauskas S, Meskinis S, Zurauskiene N, Guobiene A
Nanomaterials (Basel). 2024; 14(20).
PMID: 39452971
PMC: 11509920.
DOI: 10.3390/nano14201635.
Minev N, Buchkov K, Todorova N, Todorov R, Videva V, Stefanova M
ACS Omega. 2024; 9(13):14874-14886.
PMID: 38585138
PMC: 10993254.
DOI: 10.1021/acsomega.3c08235.
Akhtar F, Dabrowski J, Lukose R, Wenger C, Lukosius M
ACS Appl Mater Interfaces. 2023; 15(30):36966-36974.
PMID: 37479219
PMC: 10401564.
DOI: 10.1021/acsami.3c05860.
Lozano M, Bernat-Montoya I, Angelova T, Mojena A, Diaz-Fernandez F, Kovylina M
Nanomaterials (Basel). 2023; 13(13).
PMID: 37446468
PMC: 10343755.
DOI: 10.3390/nano13131952.
Atomically resolved electronic properties in single layer graphene on α-AlO (0001) by chemical vapor deposition.
Wordenweber H, Karthauser S, Grundmann A, Wang Z, Aussen S, Kalisch H
Sci Rep. 2022; 12(1):18743.
PMID: 36335187
PMC: 9637179.
DOI: 10.1038/s41598-022-22889-4.
Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study.
Yu T, Zhang H, Li D, Lu Y
RSC Adv. 2022; 11(26):16040-16050.
PMID: 35481181
PMC: 9030609.
DOI: 10.1039/d1ra01959g.
Direct growth of wafer-scale highly oriented graphene on sapphire.
Chen Z, Xie C, Wang W, Zhao J, Liu B, Shan J
Sci Adv. 2021; 7(47):eabk0115.
PMID: 34797705
PMC: 8604399.
DOI: 10.1126/sciadv.abk0115.
Direct Synthesis of Large-Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD.
Vishwakarma R, Zhu R, Abuelwafa A, Mabuchi Y, Adhikari S, Ichimura S
ACS Omega. 2019; 4(6):11263-11270.
PMID: 31460228
PMC: 6648798.
DOI: 10.1021/acsomega.9b00988.
Fabrication of a Contamination-Free Interface between Graphene and TiO Single Crystals.
Liu H, Zhu D, Shi H, Shao X
ACS Omega. 2019; 1(2):168-176.
PMID: 31457123
PMC: 6640758.
DOI: 10.1021/acsomega.6b00074.
Seed-Assisted Synthesis of Graphene Films on Insulating Substrate.
Zhuo Q, Mao Y, Lu S, Cui B, Yu L, Tang J
Materials (Basel). 2019; 12(9).
PMID: 31035332
PMC: 6539927.
DOI: 10.3390/ma12091376.
Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates.
Khan A, Masiul Islam S, Ahmed S, Kumar R, Habib M, Huang K
Adv Sci (Weinh). 2018; 5(11):1800050.
PMID: 30479910
PMC: 6247071.
DOI: 10.1002/advs.201800050.
Direct synthesis of graphene on silicon oxide by low temperature plasma enhanced chemical vapor deposition.
Munoz R, Martinez L, Lopez-Elvira E, Munuera C, Huttel Y, Garcia-Hernandez M
Nanoscale. 2018; 10(26):12779-12787.
PMID: 29946620
PMC: 6130772.
DOI: 10.1039/c8nr03210f.
Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition.
Munoz R, Munuera C, Martinez J, Azpeitia J, Gomez-Aleixandre C, Garcia-Hernandez M
2d Mater. 2017; 4(1).
PMID: 28070341
PMC: 5214927.
DOI: 10.1088/2053-1583/4/1/015009.
Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition.
Zhan H, Garrett D, Apollo N, Ganesan K, Lau D, Prawer S
Sci Rep. 2016; 6:19822.
PMID: 26805546
PMC: 4726322.
DOI: 10.1038/srep19822.
Growth, Quantitative Growth Analysis, and Applications of Graphene on γ-Al2O3 catalysts.
Park J, Lee J, Choi J, Hwang D, Song Y
Sci Rep. 2015; 5:11839.
PMID: 26137994
PMC: 4490347.
DOI: 10.1038/srep11839.
Graphitic carbon grown on fluorides by molecular beam epitaxy.
Jerng S, Lee J, Kim Y, Chun S
Nanoscale Res Lett. 2013; 8(1):11.
PMID: 23286607
PMC: 3552769.
DOI: 10.1186/1556-276X-8-11.
Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition.
Hawaldar R, Merino P, Correia M, Bdikin I, Gracio J, Mendez J
Sci Rep. 2012; 2:682.
PMID: 23002423
PMC: 3448070.
DOI: 10.1038/srep00682.