» Articles » PMID: 22522263

A Molecular Ruthenium Catalyst with Water-oxidation Activity Comparable to That of Photosystem II

Overview
Journal Nat Chem
Specialty Chemistry
Date 2012 Apr 24
PMID 22522263
Citations 117
Authors
Affiliations
Soon will be listed here.
Abstract

Across chemical disciplines, an interest in developing artificial water splitting to O(2) and H(2), driven by sunlight, has been motivated by the need for practical and environmentally friendly power generation without the consumption of fossil fuels. The central issue in light-driven water splitting is the efficiency of the water oxidation, which in the best-known catalysts falls short of the desired level by approximately two orders of magnitude. Here, we show that it is possible to close that 'two orders of magnitude' gap with a rationally designed molecular catalyst [Ru(bda)(isoq)(2)] (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; isoq = isoquinoline). This speeds up the water oxidation to an unprecedentedly high reaction rate with a turnover frequency of >300 s(-1). This value is, for the first time, moderately comparable with the reaction rate of 100-400 s(-1) of the oxygen-evolving complex of photosystem II in vivo.

Citing Articles

Iron-complex-based catalytic system for high-performance water oxidation in aqueous media.

Matsuzaki T, Kosugi K, Iwami H, Kambe T, Kiuchi H, Harada Y Nat Commun. 2025; 16(1):2145.

PMID: 40044652 PMC: 11882805. DOI: 10.1038/s41467-025-57169-y.


Electrocatalytic Ammonia Oxidation by Pyridyl-Substituted Ferrocenes.

Ahmed M, Staples R, Cundari T, Warren T J Am Chem Soc. 2025; 147(8):6514-6522.

PMID: 39951373 PMC: 11869277. DOI: 10.1021/jacs.4c14483.


Electron-Donating -Substituent (X) Enhances the Water Oxidation Activity of the Catalyst Ru(4'-X-terpyridine)(phenanthroline-SO).

Ibanez M, Breyer C, Gembicky M, Malikov Z, Musaev D, Grotjahn D Inorg Chem. 2025; 64(7):3188-3195.

PMID: 39918590 PMC: 11863372. DOI: 10.1021/acs.inorgchem.4c04124.


Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen-Oxygen Radical Coupling Pathway.

Rong C, Huang X, Arandiyan H, Shao Z, Wang Y, Chen Y Adv Mater. 2025; 37(9):e2416362.

PMID: 39815381 PMC: 11881674. DOI: 10.1002/adma.202416362.


Intermolecular O-O Bond Formation between High-Valent Ru-oxo Species.

Liu T, Zhan S, Zhang B, Wang L, Shen N, Ahlquist M Inorg Chem. 2024; 63(35):16161-16166.

PMID: 39155583 PMC: 11372747. DOI: 10.1021/acs.inorgchem.4c01560.


References
1.
Umena Y, Kawakami K, Shen J, Kamiya N . Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011; 473(7345):55-60. DOI: 10.1038/nature09913. View

2.
Lalrempuia R, McDaniel N, Muller-Bunz H, Bernhard S, Albrecht M . Water oxidation catalyzed by strong carbene-type donor-ligand complexes of iridium. Angew Chem Int Ed Engl. 2010; 49(50):9765-8. DOI: 10.1002/anie.201005260. View

3.
Lloret Fillol J, Codola Z, Garcia-Bosch I, Gomez L, Pla J, Costas M . Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat Chem. 2011; 3(10):807-13. DOI: 10.1038/nchem.1140. View

4.
Alstrum-Acevedo J, Brennaman M, Meyer T . Chemical approaches to artificial photosynthesis. 2. Inorg Chem. 2005; 44(20):6802-27. DOI: 10.1021/ic050904r. View

5.
Yin Q, Tan J, Besson C, Geletii Y, Musaev D, Kuznetsov A . A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science. 2010; 328(5976):342-5. DOI: 10.1126/science.1185372. View