» Articles » PMID: 22509204

Liquid-crystalline Nanoparticles: Hybrid Design and Mesophase Structures

Overview
Specialty Chemistry
Date 2012 Apr 18
PMID 22509204
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Liquid-crystalline nanoparticles represent an exciting class of new materials for a variety of potential applications. By combining supramolecular ordering with the fluid properties of the liquid-crystalline state, these materials offer the possibility to organise nanoparticles into addressable 2-D and 3-D arrangements exhibiting high processability and self-healing properties. Herein, we review the developments in the field of discrete thermotropic liquid-crystalline nanoparticle hybrids, with special emphasis on the relationship between the nanoparticle morphology and the nature of the organic ligand coating and their resulting phase behaviour. Mechanisms proposed to explain the supramolecular organisation of the mesogens within the liquid-crystalline phases are discussed.

Citing Articles

Gold Nanoparticles Modification with Liquid Crystalline Polybenzylic Dendrons via 1,3-Dipolar Cycloaddition.

Ulloa J, Barbera J, Serrano J Nanomaterials (Basel). 2022; 12(22).

PMID: 36432312 PMC: 9699240. DOI: 10.3390/nano12224026.


Orientational self-assembly of nanoparticles in nematic droplets.

Tomasovicova N, Batkova M, Batko I, Lackova V, Zavisova V, Kopcansky P Nanoscale Adv. 2022; 3(10):2777-2781.

PMID: 36134179 PMC: 9418037. DOI: 10.1039/d1na00089f.


Photo-tunable epsilon-near-zero behavior in a self-assembled liquid crystal - nanoparticle hybrid material.

Bhardwaj A, Sridurai V, Bhat S, Yelamaggad C, Nair G Nanoscale Adv. 2022; 3(9):2508-2515.

PMID: 36134163 PMC: 9416799. DOI: 10.1039/d0na01039a.


Chiral plasmonic liquid crystal gold nanoparticles: self-assembly into a circular dichroism responsive helical lamellar superstructure.

Bhat S, Shankar Rao D, Prasad S, Yelamaggad C Nanoscale Adv. 2022; 3(8):2269-2279.

PMID: 36133755 PMC: 9419753. DOI: 10.1039/d0na01070g.


Gold nanoparticles grafted with chemically incompatible ligands.

Wolska J, Blazejewska A, Tupikowska M, Pociecha D, Gorecka E RSC Adv. 2022; 11(16):9568-9571.

PMID: 35423469 PMC: 8695456. DOI: 10.1039/d1ra00547b.


References
1.
Lu A, Salabas E, Schuth F . Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007; 46(8):1222-44. DOI: 10.1002/anie.200602866. View

2.
Goesmann H, Feldmann C . Nanoparticulate functional materials. Angew Chem Int Ed Engl. 2010; 49(8):1362-95. DOI: 10.1002/anie.200903053. View

3.
Grzelczak M, Vermant J, Furst E, Liz-Marzan L . Directed self-assembly of nanoparticles. ACS Nano. 2010; 4(7):3591-605. DOI: 10.1021/nn100869j. View

4.
Haase M, Schafer H . Upconverting nanoparticles. Angew Chem Int Ed Engl. 2011; 50(26):5808-29. DOI: 10.1002/anie.201005159. View

5.
Shevchenko E, Talapin D, OBrien S, Murray C . Polymorphism in AB(13) nanoparticle superlattices: an example of semiconductor-metal metamaterials. J Am Chem Soc. 2005; 127(24):8741-7. DOI: 10.1021/ja050510z. View