» Articles » PMID: 22492439

Purification and Characterization of the Acetone Carboxylase of Cupriavidus Metallidurans Strain CH34

Overview
Date 2012 Apr 12
PMID 22492439
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α(2)β(2)γ(2) and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively.

Citing Articles

Time-resolved proteomic profiling of Cupriavidus metallidurans CH34 in the copper-induced viable-but-nonculturable state.

Patocka T, Gupta S, Mastroleo F, Leys N, Matroule J, Van Houdt R Metallomics. 2025; 17(3).

PMID: 39963715 PMC: 11886801. DOI: 10.1093/mtomcs/mfaf007.


A suitable solvent for adsorption of poorly water-soluble substances onto silica gel in a ready biodegradability test.

Takano Y, Takekoshi S, Takano K, Matoba Y, Mukumoto M, Sowa K J Pestic Sci. 2025; 49(4):271-276.

PMID: 39877883 PMC: 11770178. DOI: 10.1584/jpestics.D24-016.


CH34 Possesses Aromatic Catabolic Versatility and Degrades Benzene in the Presence of Mercury and Cadmium.

Alviz-Gazitua P, Duran R, Millacura F, Cardenas F, Rojas L, Seeger M Microorganisms. 2022; 10(2).

PMID: 35208938 PMC: 8879955. DOI: 10.3390/microorganisms10020484.


Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation.

Mus F, Eilers B, Alleman A, Kabasakal B, Wells J, Murray J Sci Rep. 2017; 7(1):7234.

PMID: 28775283 PMC: 5543143. DOI: 10.1038/s41598-017-06973-8.


Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling.

Hug L, Castelle C, Wrighton K, Thomas B, Sharon I, Frischkorn K Microbiome. 2014; 1(1):22.

PMID: 24450983 PMC: 3971608. DOI: 10.1186/2049-2618-1-22.


References
1.
Zheng Y, Li L, Xian M, Ma Y, Yang J, Xu X . Problems with the microbial production of butanol. J Ind Microbiol Biotechnol. 2009; 36(9):1127-38. DOI: 10.1007/s10295-009-0609-9. View

2.
Clark D, Ensign S . Evidence for an inducible nucleotide-dependent acetone carboxylase in Rhodococcus rhodochrous B276. J Bacteriol. 1999; 181(9):2752-8. PMC: 93715. DOI: 10.1128/JB.181.9.2752-2758.1999. View

3.
Nocek B, Boyd J, Ensign S, Peters J . Crystallization and preliminary X-ray analysis of an acetone carboxylase from Xanthobacter autotrophicus strain Py2. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 2):385-7. DOI: 10.1107/S0907444903028373. View

4.
Dullius C, Chen C, Schink B . Nitrate-dependent degradation of acetone by Alicycliphilus and Paracoccus strains and comparison of acetone carboxylase enzymes. Appl Environ Microbiol. 2011; 77(19):6821-5. PMC: 3187103. DOI: 10.1128/AEM.05385-11. View

5.
Sluis M, Larsen R, Krum J, Anderson R, Metcalf W, Ensign S . Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol. 2002; 184(11):2969-77. PMC: 135078. DOI: 10.1128/JB.184.11.2969-2977.2002. View