» Articles » PMID: 22491889

Mitotic Spindle Form and Function

Overview
Journal Genetics
Specialty Genetics
Date 2012 Apr 12
PMID 22491889
Citations 85
Authors
Affiliations
Soon will be listed here.
Abstract

The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.

Citing Articles

Selective regulation of kinesin-5 function by β-tubulin carboxy-terminal tails.

Thomas E, Moore J J Cell Biol. 2024; 224(3).

PMID: 39688542 PMC: 11651144. DOI: 10.1083/jcb.202405115.


Expansion microscopy reveals characteristic ultrastructural features of pathogenic budding yeast species.

Reza M, Dutta S, Goyal R, Shah H, Dey G, Sanyal K J Cell Sci. 2024; 137(20).

PMID: 39051746 PMC: 11423813. DOI: 10.1242/jcs.262046.


Plasticity of the mitotic spindle in response to karyotype variation.

Kunchala P, Varberg J, OToole E, Gardner J, Smith S, McClain M Curr Biol. 2024; 34(15):3416-3428.e4.

PMID: 39043187 PMC: 11333012. DOI: 10.1016/j.cub.2024.06.058.


A stable microtubule bundle formed through an orchestrated multistep process controls quiescence exit.

Laporte D, Massoni-Laporte A, Lefranc C, Dompierre J, Mauboules D, Nsamba E Elife. 2024; 12.

PMID: 38527106 PMC: 10963028. DOI: 10.7554/eLife.89958.


Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges.

Zhang J, Qiu R, Bieger B, Oakley C, Oakley B, Egan M Genetics. 2023; 225(4).

PMID: 37724751 PMC: 10697819. DOI: 10.1093/genetics/iyad169.


References
1.
Stirling D, Welch K, Stark M . Interaction with calmodulin is required for the function of Spc110p, an essential component of the yeast spindle pole body. EMBO J. 1994; 13(18):4329-42. PMC: 395360. DOI: 10.1002/j.1460-2075.1994.tb06753.x. View

2.
Bouck D, Bloom K . Pericentric chromatin is an elastic component of the mitotic spindle. Curr Biol. 2007; 17(9):741-8. PMC: 1937037. DOI: 10.1016/j.cub.2007.03.033. View

3.
Klenchin V, Frye J, Jones M, Winey M, Rayment I . Structure-function analysis of the C-terminal domain of CNM67, a core component of the Saccharomyces cerevisiae spindle pole body. J Biol Chem. 2011; 286(20):18240-50. PMC: 3093896. DOI: 10.1074/jbc.M111.227371. View

4.
McEwen B, Dong Y . Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol Life Sci. 2010; 67(13):2163-72. PMC: 2883615. DOI: 10.1007/s00018-010-0322-x. View

5.
Pereira G, Tanaka T, Nasmyth K, Schiebel E . Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J. 2001; 20(22):6359-70. PMC: 125717. DOI: 10.1093/emboj/20.22.6359. View