» Articles » PMID: 2243783

Optimization of the Annealing Temperature for DNA Amplification in Vitro

Overview
Specialty Biochemistry
Date 1990 Nov 11
PMID 2243783
Citations 123
Authors
Affiliations
Soon will be listed here.
Abstract

In the polymerase chain reaction (PCR) technique, DNA is amplified in vitro by a series of polymerization cycles consisting of three temperature-dependent steps: DNA denaturation, primer-template annealing, and DNA synthesis by a thermostable DNA polymerase. The purity and yield of the reaction products depend on several parameters, one of which is the annealing temperature (Ta). At both sub- and super-optimal Ta values, non-specific products may be formed, and the yield of products is reduced. Optimizing the Ta is especially critical when long products are synthesized or when total genomic DNA is the substrate for PCR. In this article we experimentally determine the optimal annealing temperature (TaOPT) values for several primer-template pairs and develop a method for its calculation. The TaOPT is found to be a function of the melting temperatures of the less stable primer-template pair and of the product. The fact that experimental and calculated TaOPT values agree to within 0.7 degree C eliminates the need for determining TaOPT experimentally. Synthesis of DNA fragments shorter than 1 kb is more efficient if a variable Ta is used, such that the Ta is higher in each consecutive cycle.

Citing Articles

Establishing Reference Genes for Accurate Gene Expression Profiling in Toxigenic .

Edelbacher T, Laimer-Digruber A, Pfaffl M, Ehling-Schulz M Toxins (Basel). 2025; 17(2).

PMID: 39998075 PMC: 11860165. DOI: 10.3390/toxins17020058.


Innovative CDR grafting and computational methods for PD-1 specific nanobody design.

Devasani J, Guntuku G, Panatula N, Muthyala M, Palla M, Siahaan T Front Bioinform. 2025; 4:1488331.

PMID: 39897125 PMC: 11782559. DOI: 10.3389/fbinf.2024.1488331.


Towards the Development of an Optical Biosensor for the Detection of Human Blood for Forensic Analysis.

Costanzo H, den Hartog M, Gooch J, Frascione N Sensors (Basel). 2024; 24(21).

PMID: 39517977 PMC: 11548090. DOI: 10.3390/s24217081.


Development of a High-Resolution Melting Method for the Detection of Clarithromycin-Resistant in the Gastric Microbiome.

Kuang Z, Huang H, Chen L, Shang Y, Huang S, Liu J Antibiotics (Basel). 2024; 13(10).

PMID: 39452241 PMC: 11505316. DOI: 10.3390/antibiotics13100975.


Single-nuclei transcriptome analysis of channel catfish spleen provides insight into the immunome of an aquaculture-relevant species.

Aldersey J, Lange M, Beck B, Abernathy J PLoS One. 2024; 19(9):e0309397.

PMID: 39325796 PMC: 11426453. DOI: 10.1371/journal.pone.0309397.


References
1.
Freier S, Kierzek R, Jaeger J, Sugimoto N, Caruthers M, Neilson T . Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986; 83(24):9373-7. PMC: 387140. DOI: 10.1073/pnas.83.24.9373. View

2.
Schildkraut C . Dependence of the melting temperature of DNA on salt concentration. Biopolymers. 1965; 3(2):195-208. DOI: 10.1002/bip.360030207. View

3.
Borer P, Dengler B, Tinoco Jr I, Uhlenbeck O . Stability of ribonucleic acid double-stranded helices. J Mol Biol. 1974; 86(4):843-53. DOI: 10.1016/0022-2836(74)90357-x. View

4.
Breslauer K, Frank R, Blocker H, Marky L . Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986; 83(11):3746-50. PMC: 323600. DOI: 10.1073/pnas.83.11.3746. View

5.
Guyer R, Koshland Jr D . The Molecule of the Year. Science. 1989; 246(4937):1543-6. DOI: 10.1126/science.2688087. View