Leahy S, Matei N, Blair N, Shahidi M
Invest Ophthalmol Vis Sci. 2022; 63(6):30.
PMID: 35767246
PMC: 9251813.
DOI: 10.1167/iovs.63.6.30.
Liu Y, Shen J, Fortmann S, Wang J, Vestweber D, Campochiaro P
JCI Insight. 2017; 2(18).
PMID: 28931763
PMC: 5621911.
DOI: 10.1172/jci.insight.95530.
Uddin M, Jayagopal A, McCollum G, Yang R, Penn J
Invest Ophthalmol Vis Sci. 2017; 58(9):3818-3824.
PMID: 28750413
PMC: 5531786.
DOI: 10.1167/iovs.16-21187.
Yang J, You B, Wang Q, Chan S, Jonas J, Wei W
Int J Ophthalmol. 2017; 10(2):267-270.
PMID: 28251087
PMC: 5313551.
DOI: 10.18240/ijo.2017.02.14.
Lin L, Dong Y, Zong Y, Zheng Q, Fu Y, Yuan Y
Int J Ophthalmol. 2016; 9(1):99-107.
PMID: 26949618
PMC: 4768501.
DOI: 10.18240/ijo.2016.01.17.
Inner retinal oxygen delivery and metabolism under normoxia and hypoxia in rat.
Wanek J, Teng P, Blair N, Shahidi M
Invest Ophthalmol Vis Sci. 2013; 54(7):5012-9.
PMID: 23821203
PMC: 3723378.
DOI: 10.1167/iovs.13-11887.
Fluorescein angiography, optical coherence tomography, and histopathologic findings in a VEGF(165) animal model of retinal angiogenesis.
Arana L, Pinto A, Chader G, Barbosa J, Morales S, Moreira A
Graefes Arch Clin Exp Ophthalmol. 2012; 250(10):1421-8.
PMID: 22427240
DOI: 10.1007/s00417-012-1978-8.
Animal models of choroidal and retinal neovascularization.
Grossniklaus H, Kang S, Berglin L
Prog Retin Eye Res. 2010; 29(6):500-19.
PMID: 20488255
PMC: 2962694.
DOI: 10.1016/j.preteyeres.2010.05.003.
Robust hypoxia-selective regulation of a retinal pigment epithelium-specific adeno-associated virus vector.
Dougherty C, Smith G, Dorey C, Prentice H, Webster K, Blanks J
Mol Vis. 2008; 14:471-80.
PMID: 18334957
PMC: 2268848.
Development of a new mouse model of branch retinal vein occlusion and retinal neovascularization.
Zhang H, Sonoda K, Qiao H, Oshima T, Hisatomi T, Ishibashi T
Jpn J Ophthalmol. 2007; 51(4):251-7.
PMID: 17660984
DOI: 10.1007/s10384-007-0445-2.
Ocular oxygen consumption during vitreoperfusion in the cat.
Blair N
Trans Am Ophthalmol Soc. 2001; 98:305-29.
PMID: 11190030
PMC: 1298233.
Effect of isovolaemic haemodilution on visual outcome in branch retinal vein occlusion.
Chen H, Wiek J, Gupta A, Luckie A, Kohner E
Br J Ophthalmol. 1998; 82(2):162-7.
PMID: 9613383
PMC: 1722474.
DOI: 10.1136/bjo.82.2.162.
Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization.
Okamoto N, Tobe T, Hackett S, Ozaki H, Vinores M, LaRochelle W
Am J Pathol. 1997; 151(1):281-91.
PMID: 9212753
PMC: 1857935.
Vascular endothelial growth factor and ocular neovascularization.
Miller J
Am J Pathol. 1997; 151(1):13-23.
PMID: 9212726
PMC: 1857918.
Hypoxia precedes the development of experimental preretinal neovascularization.
Handa J, Berkowitz B, Wilson C, Ando N, Sen H, Jaffe G
Graefes Arch Clin Exp Ophthalmol. 1996; 234(1):43-6.
PMID: 8750849
DOI: 10.1007/BF00186517.
Blood-retina barrier in acute retinal branch vein occlusion.
Silva R, Faria de Abreu J, Cunha-Vaz J
Graefes Arch Clin Exp Ophthalmol. 1995; 233(11):721-6.
PMID: 8566831
DOI: 10.1007/BF00164677.
Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization.
Pierce E, Avery R, Foley E, Aiello L, Smith L
Proc Natl Acad Sci U S A. 1995; 92(3):905-9.
PMID: 7846076
PMC: 42729.
DOI: 10.1073/pnas.92.3.905.
Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model.
Miller J, Adamis A, Shima D, DAmore P, Moulton R, OReilly M
Am J Pathol. 1994; 145(3):574-84.
PMID: 7521577
PMC: 1890317.