Gonsalves M, Escobar A, Altarabishi A, Xu C
Curr Issues Mol Biol. 2024; 46(8):8053-8070.
PMID: 39194693
PMC: 11352968.
DOI: 10.3390/cimb46080476.
Kurdadze T, Lamadie F, Nehme K, Teychene S, Biscans B, Rodriguez-Ruiz I
Sensors (Basel). 2024; 24(5).
PMID: 38475065
PMC: 10933925.
DOI: 10.3390/s24051529.
Suzuki T, Kalyan S, Berlinicke C, Yoseph S, Zack D, Hur S
Phys Fluids (1994). 2023; 35(10):103117.
PMID: 37849975
PMC: 10577600.
DOI: 10.1063/5.0167285.
Naderi M, Barilla L, Zhou J, Papautsky I, Peng Z
Micromachines (Basel). 2022; 13(12).
PMID: 36557430
PMC: 9781382.
DOI: 10.3390/mi13122131.
Feng H, Patel D, Magda J, Geher S, Sigala P, Gale B
ACS Omega. 2022; 7(45):41759-41767.
PMID: 36406492
PMC: 9670260.
DOI: 10.1021/acsomega.2c06021.
Viscoelastic microfluidics: progress and challenges.
Zhou J, Papautsky I
Microsyst Nanoeng. 2021; 6:113.
PMID: 34567720
PMC: 8433399.
DOI: 10.1038/s41378-020-00218-x.
Numerical simulations of viscoelastic particle migration in a microchannel with triangular cross-section.
DAvino G
Electrophoresis. 2021; 42(21-22):2293-2302.
PMID: 34080213
PMC: 9292006.
DOI: 10.1002/elps.202100121.
High throughput viscoelastic particle focusing and separation in spiral microchannels.
Kumar T, Ramachandraiah H, Narayana Iyengar S, Banerjee I, Martensson G, Russom A
Sci Rep. 2021; 11(1):8467.
PMID: 33875755
PMC: 8055915.
DOI: 10.1038/s41598-021-88047-4.
Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers.
Zhang T, Namoto M, Okano K, Akita E, Teranishi N, Tang T
Sci Rep. 2021; 11(1):1652.
PMID: 33462348
PMC: 7813873.
DOI: 10.1038/s41598-021-81190-y.
Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids.
Ni C, Jiang D
Micromachines (Basel). 2020; 11(10).
PMID: 33007973
PMC: 7599618.
DOI: 10.3390/mi11100908.
The mechanical responses of advecting cells in confined flow.
Connolly S, Newport D, McGourty K
Biomicrofluidics. 2020; 14(3):031501.
PMID: 32454924
PMC: 7200165.
DOI: 10.1063/5.0005154.
Viscoelastic second normal stress difference dominated multiple-stream particle focusing in microfluidic channels.
Feng H, Magda J, Gale B
Appl Phys Lett. 2020; 115(26):263702.
PMID: 32127720
PMC: 7043827.
DOI: 10.1063/1.5129281.
Sheathless Shape-Based Separation of Using a Viscoelastic Non-Newtonian Fluid.
Nam J, Jee H, Jang W, Yoon J, Park B, Lee S
Micromachines (Basel). 2019; 10(12).
PMID: 31779188
PMC: 6952941.
DOI: 10.3390/mi10120817.
Effects of Ionic Strength on Lateral Particle Migration in Shear-Thinning Xanthan Gum Solutions.
Cho M, Hong S, Lee S, Hyun K, Kim J
Micromachines (Basel). 2019; 10(8).
PMID: 31443169
PMC: 6723194.
DOI: 10.3390/mi10080535.
Handheld Microflow Cytometer Based on a Motorized Smart Pipette, a Microfluidic Cell Concentrator, and a Miniaturized Fluorescence Microscope.
Kim B, Kang D, Choi S
Sensors (Basel). 2019; 19(12).
PMID: 31248214
PMC: 6630933.
DOI: 10.3390/s19122761.
Normal stress difference-driven particle focusing in nanoparticle colloidal dispersion.
Kim B, Lee S, Yoo T, Kim S, Kim S, Choi S
Sci Adv. 2019; 5(6):eaav4819.
PMID: 31187058
PMC: 6555624.
DOI: 10.1126/sciadv.aav4819.
A smart preparation strategy for point-of-care cellular counting of trace volumes of human blood.
Li X, Deng Q, Liu H, Lei Y, Fan P, Wang B
Anal Bioanal Chem. 2019; 411(13):2767-2780.
PMID: 30976894
DOI: 10.1007/s00216-019-01738-w.
Flow Behavior of Chain and Star Polymers and Their Mixtures.
Srivastva D, Nikoubashman A
Polymers (Basel). 2019; 10(6).
PMID: 30966633
PMC: 6403976.
DOI: 10.3390/polym10060599.
Bioengineering Microgels and Hydrogel Microparticles for Sensing Biomolecular Targets.
Battista E, Causa F, Netti P
Gels. 2019; 3(2).
PMID: 30920517
PMC: 6318684.
DOI: 10.3390/gels3020020.
Isolation of cells from whole blood using shear-induced diffusion.
Zhou J, Tu C, Liang Y, Huang B, Fang Y, Liang X
Sci Rep. 2018; 8(1):9411.
PMID: 29925931
PMC: 6010421.
DOI: 10.1038/s41598-018-27779-2.