» Articles » PMID: 22395411

Special Features of Mitochondrial Ca²⁺ Signalling in Adrenal Glomerulosa Cells

Overview
Journal Pflugers Arch
Specialty Physiology
Date 2012 Mar 8
PMID 22395411
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Aldosterone, secreted by adrenal glomerulosa cells, allows the adaptation of the vertebrate organism to a wide range of physiological and pathological stimuli including acute haemodynamic challenges and long-term changes in dietary sodium and potassium intake. Most of the extracellular signals are mediated by cytosolic Ca²⁺ signal deriving from Ca²⁺ release, store-operated and/or voltage-gated Ca²⁺ influx. Mitochondria in glomerulosa cells play a fundamental role in generating and modulating the final biological response. These organelles not only house several enzymes of aldosterone biosynthesis but also-in a Ca²⁺-dependent manner-provide NADPH for the function of these enzymes. Moreover, mitochondria, constituting a high portion of cytoplasmic volume and displaying a uniquely low-threshold Ca²⁺ sequestering ability, shape and thus modulate the decoding of the complex cytosolic Ca²⁺ response. The unusual features of mitochondrial Ca²⁺ signalling that permit such an integrative function in adrenal glomerulosa cells are hereby described.

Citing Articles

The Biology of Normal Zona Glomerulosa and Aldosterone-Producing Adenoma: Pathological Implications.

Seccia T, Caroccia B, Gomez-Sanchez E, Gomez-Sanchez C, Rossi G Endocr Rev. 2018; 39(6):1029-1056.

PMID: 30007283 PMC: 6236434. DOI: 10.1210/er.2018-00060.


Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2.

Peng S, Gerasimenko J, Tsugorka T, Gryshchenko O, Samarasinghe S, Petersen O Philos Trans R Soc Lond B Biol Sci. 2016; 371(1700).

PMID: 27377732 PMC: 4938023. DOI: 10.1098/rstb.2015.0423.


No evidence for a local renin-angiotensin system in liver mitochondria.

Astin R, Bentham R, Djafarzadeh S, Horscroft J, Kuc R, Leung P Sci Rep. 2013; 3:2467.

PMID: 23959064 PMC: 3747509. DOI: 10.1038/srep02467.


A Special Issue on the cell-specific roles of mitochondrial Ca²⁺ handling.

Spat A, Petersen O Pflugers Arch. 2012; 464(1):1-2.

PMID: 22688791 DOI: 10.1007/s00424-012-1123-x.


Mitochondrial function and malfunction in the pathophysiology of pancreatitis.

Gerasimenko O, Gerasimenko J Pflugers Arch. 2012; 464(1):89-99.

PMID: 22653502 DOI: 10.1007/s00424-012-1117-8.


References
1.
Foreman M, Smith J, Publicover S . Characterisation of serum-induced intracellular Ca2+ oscillations in primary bone marrow stromal cells. J Cell Physiol. 2005; 206(3):664-71. DOI: 10.1002/jcp.20521. View

2.
Duchen M . Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004; 25(4):365-451. DOI: 10.1016/j.mam.2004.03.001. View

3.
Meyer T, Stryer L . Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci U S A. 1988; 85(14):5051-5. PMC: 281685. DOI: 10.1073/pnas.85.14.5051. View

4.
Di Capite J, Ng S, Parekh A . Decoding of cytoplasmic Ca(2+) oscillations through the spatial signature drives gene expression. Curr Biol. 2009; 19(10):853-8. DOI: 10.1016/j.cub.2009.03.063. View

5.
Dupont G, Combettes L, Bird G, Putney J . Calcium oscillations. Cold Spring Harb Perspect Biol. 2011; 3(3). PMC: 3039928. DOI: 10.1101/cshperspect.a004226. View